Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Preparation and field emission properties of LIG/CuO composites from laser irradiated copper-containing cork

MA Li'an HUANG Xu CHEN Song WEI Zhaohui SUN Lei YE Xiaoyun

Citation:

Preparation and field emission properties of LIG/CuO composites from laser irradiated copper-containing cork

MA Li'an, HUANG Xu, CHEN Song, WEI Zhaohui, SUN Lei, YE Xiaoyun
cstr: 32037.14.aps.74.20250378
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Three-dimensional (3D) graphene materials have excellent electronic emission performance and mechanical stability, showing significant advantages in the field of high current density field emitters. In this study, copper oxide modified three-dimensional graphene composites (LIG/CuO) are prepared in situ by a femtosecond laser one-step method, which realizes the simultaneous regulation of cork carbonization and copper oxidation. Shallow copper-rich precursors are constructed by copper salt infiltration and ascorbic acid reduction. Laser irradiation is used to synchronously induce the carbonization of cellulose into few-layer graphene and the transformation of Cu into CuO, forming a three-dimensional fiber network of microcrystalline graphene coated with CuO nanoparticles (30–80 nm). The structure exhibits excellent field emission performance: the threshold field of preparing pure laser- induced graphene (LIG) is ~2.12 V/μm and the field enhancement factor is ~8223. After optimizing CuO loading, the threshold field of LIG/CuO-5 is reduced to 1.57 V/μm, the field enhancement factor rises up to ~8823, and the ultra-high current density of 22.71 mA/cm2 is achieved at 2.89 V/μm. The density functional theory (DFT) calculations show that the electrons at the heterojunction interface transfer from CuO to graphene, which reduces the work function of graphene from 4.833 eV to 4.677 eV, and the band bending of CuO surface synergistically reduces the tunneling barrier. In addition, the local electric field enhancement effect of CuO nanoparticles and the optimized distribution density synergistically increase the effective emission point density. The performance improvement is mainly attributed to three synergistic effects: 1) the three-dimensional porous graphene network provides abundant tip emission sites; 2) the introduction of CuO nanoparticles reduces the work function of the composite material from 4.833 eV to 4.667 eV, effectively reducing the electron escape barrier; 3) the heterojunction interface forms a directional electron migration channel under a positive bias electric field, combined with the excellent conductivity of LIG, which significantly improves the electron tunneling efficiency.
      Corresponding author: MA Li'an, mlajn@163.com
    • Funds: Project supported by the Natural Science Foundation of Fujian Province, China (Grant Nos. 2024J01835, 2024J01281) and the Top Young Talents of Eagle Program of Fujian Province, China (Grant No. KY310255).
    [1]

    Zhang H, Tang J, Yuan J S, Yamauchi Y, Suzuki T T, Shinya N, Nakajima K, Qin L C 2016 Nat. Nanotechnol. 11 273Google Scholar

    [2]

    Deka N, Subramanian V 2020 IEEE Trans. Electron Devices 67 3753Google Scholar

    [3]

    Xing Y, Zhang Y, Xu N S, Huang H J, Ke Y L, Li B H, Chen J, She J C, Deng S Z 2018 IEEE Trans. Electron Devices 65 1146Google Scholar

    [4]

    Cao G, Lee Y Z, Peng R, Liu Z, Rajaram R, Calderon-Colon X, An L, Wang P, Phan T, Sultana S, Lalush D S, Lu J P, Zhou O 2009 Phys. Med. Biol. 54 2323Google Scholar

    [5]

    Heer W, Châtelain A, Ugarte D 1995 Science 270 1179Google Scholar

    [6]

    郑钦仁, 詹涪至, 折俊艺, 王建宇, 石若立, 孟国栋 2024 73 086101Google Scholar

    Zheng Q R, Zhan B Z, Zhe J Y, Wang J Y, Shi R L, Meng G D 2024 Acta Phys. Sin. 73 086101Google Scholar

    [7]

    Bhopale S R, Jagtap K K, Phatangare A, Kamble S, Dhole S D, Mathe V L, More M A 2023 Appl. Surf. Sci. 619 156752Google Scholar

    [8]

    Guo X, Li Y L, Ding Y Q, Chen Q, Li J S 2019 Mater. Des. 162 293Google Scholar

    [9]

    Deng J H, Liu R N, Zhang Y, Zhu W X, Han A L, Cheng G A 2017 J. Alloys Compd. 723 75Google Scholar

    [10]

    Huang Y X, Zhao H, Li Z L, Hu L L, Wu Y L, Sun F, Meng S, Zhao J M 2023 Adv. Mater. 35 2208362Google Scholar

    [11]

    黄逸轩, 赵继民 2024 光散射学报 36 52Google Scholar

    Huang Y X, Zhao J M 2024 J. Light Scat. 36 52Google Scholar

    [12]

    Hasaien J, Wu Y L, Shi M Z, Zhai Y N, Wu Q, Liu Z, Zhou Y, Chen X. H, Zhao J M 2025 PNAS 122 e2406464122Google Scholar

    [13]

    Jiang L T, Jiang C Y, Tian Y C, Zhao H, Zhang J, Tian Z Y, Fu S H, Liang E J, Wang X C, Jin C Q, Zhao J M 2024 Chin. Phys. Lett. 41 047802Google Scholar

    [14]

    Wu L M, Dong Y Z, Zhao J L, Ma D T, Huang W C, Zhang Y, Wang Y Z, Jiang X T, Xiang Y J, Li J Q, Feng Y Q, Xu J L, Zhang H 2019 Adv. Mater. 31 1807981Google Scholar

    [15]

    You Z H, Qiu Q M, Chen H Y, Feng Y Y, Wang X, Wang Y X, Ying Y B 2020 Biosens. Bioelectron. 150 111896Google Scholar

    [16]

    Zhang J B, Ren M Q, Li Y L, Tour J M 2018 ACS Energy Lett. 3 677Google Scholar

    [17]

    Yoon H, Nah J, Kim H, Ko S, Sharifuzzaman M, Barman S C, Xuan X, Kim J Y, Park J Y 2020 Sensor Actuat. B 311 127866Google Scholar

    [18]

    Lin J, Peng Z W, Liu Y Y, Zepeda F R, Ye R Q, Samuel E L, Yacaman M J, Yakobson B I, Tour J M 2014 Nat. Commun. 5 5714Google Scholar

    [19]

    Chyan Y, Ye R Q, Li Y L, Singh S P, Arnusch C J, Tour J M 2018 ACS Nano 12 2176Google Scholar

    [20]

    Le T S D, Park S B, An J N, Lee P S, Kim Y J 2019 Adv. Funct. Mater. 29 1902771Google Scholar

    [21]

    Wu W B, Liang R X, Lu L S, Wang W T, Ran X, Yue D D 2020 Surf. Coat. Technol. 393 125744Google Scholar

    [22]

    Cheng J F, Lin Z X, Wu D, Liu C L, Cao Z 2022 J. Hazard. Mater. 436 129150.Google Scholar

    [23]

    Ryu C, Do H M, In J B 2024 Appl. Surf. Sci. 643 158696Google Scholar

    [24]

    Rodrigues J, Zanoni J, Gaspar G, Fernandes A J S, Carvalho A F, Santos N F, Monteiro T, Costa F M 2019 Nanoscale Adv. 1 3252Google Scholar

    [25]

    Lal A, Porat H, Hirsch L O, Cahan R, Borenstein A 2024 Appl. Surf. Sci. 643 158660Google Scholar

    [26]

    Ma L A, Chen Y B, Ye X Y, Sun L, Wei Z H, Huang L, Chen H X, Wang Q T, Chen E G 2021 Ceram. Int. 47 27487Google Scholar

    [27]

    Huang X, Chen S, Pan J, Wei Z H, Ye X Y, Wang Q T, Ma L A 2024 Ceram. Int. 50 24205Google Scholar

    [28]

    Perdew J P, Burke K, Wang Y 1996 Phys. Rev. B Condens. Matter 54 16533Google Scholar

    [29]

    Sun Z L, Shao Z G, Wang C L, Yang L 2016 Carbon 110 313Google Scholar

    [30]

    Zhang H W, Sun Y S, Li Q W, Wan C X 2022 ACS Sustainable Chem. Eng. 10 11501Google Scholar

    [31]

    Raveendran K, Ganesh A, Khilar K C 1996 Fuel 75 987Google Scholar

    [32]

    Babinszki B, Sebestyén Z, Jakab E, Kőhalmi L, Bozi J, Várhegyi G, Wang L, Skreiberg Ø, Czégéy Z 2021 Bioresour. Technol. 338 125567Google Scholar

    [33]

    Sugioka K, Cheng Y 2014 Light Sci. Appl. 3 e149Google Scholar

    [34]

    Chen L F, Yu H, Zhong J S, Wu J, Su W T 2018 J. Alloys Compd. 749 60Google Scholar

    [35]

    Keiluweit M, Nico P S, Johnson M G, Kleber M 2010 Environ. Sci. Technol. 44 1247Google Scholar

    [36]

    Yu S J, Wang L Z, Li Q H, Zhang Y G, Zhou H 2022 Mater. Today Sustain. 19 100209Google Scholar

    [37]

    Miao M, Zuo S L, Zhao Y Y, Wang Y F, Xia H A, Tan C, Gao H 2018 Carbon 140 504Google Scholar

    [38]

    Wu J B, Lin M L, Cong X, Liu H N, Tan P H 2018 Chem. Soc. Rev. 47 1822Google Scholar

    [39]

    Arulkumar E, Shree S S, Thanikaikarasan S 2024 J. Mater Sci. Mater. EL 35 198Google Scholar

    [40]

    杨孟骐, 姬宇航, 梁琦, 王长昊, 张跃飞, 张铭, 王波, 王如志 2020 69 167805Google Scholar

    Yang M Q, Ji Y H, Liang Q, Wang C H, Zhang Y F, Zhang M, Wang B, Wang R Z 2020 Acta Phys. Sin. 69 167805Google Scholar

    [41]

    Zhang Y H, Ding H, Liu C X, Zhang J C, Wang C B, Guo W H, Ji Q Y, Zhao J Y, Zi Y Y 2024 Diamond Relat. Mater. 144 110972Google Scholar

    [42]

    Chu Y L, Young S J, Cai D Y, Chu T T 2021 IEEE J. Electron. Devi. 9 1076Google Scholar

    [43]

    Meng G D, Zhan F Z, She J Y, Xie J N, Zheng Q R, Cheng Y H, Yin Z Y 2023 Nanoscale 15 15994Google Scholar

    [44]

    Fan L N, Chen W, Zhou K, Zheng H, Zheng P, Zheng L, Zhang Y 2023 ACS Appl. Electron. Mater. 5 123Google Scholar

  • 图 1  激光辐照制备LIG/CuO示意图

    Figure 1.  Flow diagram of LIG/CuO preparation by laser irradiation.

    图 2  不同样品的场发射电子显微镜照片 (a1) LIG(截面图); (a2) LIG/CuO-5(截面图); (b1), (b2) LIG; (c1), (c2) LIG/CuAc-5; (d1), (d2) LIG/CuO-2.5; (e1), (e2) LIG/CuO-5; (f1), (f2) LIG/CuO-10; (g) LIG/CuO-5的元素分布图

    Figure 2.  Field emission electron microscopy images of different samples: (a1) LIG (cross section); (a2) LIG/CuO-5 (cross section); (b1), (b2) LIG; (c1), (c2) LIG/CuAc-5; (d1), (d2) LIG/CuO-2.5; (e1), (e2) LIG/CuO-5; (f1), (f2) LIG/CuO-10; (g) mapping images of LIG/CuO-5.

    图 3  样品的TEM照片 (a) LIG; (b), (c) LIG/CuO-5

    Figure 3.  TEM images of samples: (a) LIG; (b), (c) LIG/CuO-5.

    图 4  样品LIG和LIG/CuO-5的(a) Raman谱图和(b) FTIR谱图

    Figure 4.  Raman spectra (a) and FTIR spectra (b) of LIG and LIG/CuO-5.

    图 5  (a) LIG/CuO-5的XPS图谱全谱; (b) C 1s, (c) O 1s, (d) Cu 2p的高分辨XPS光谱

    Figure 5.  (a) Survey XPS spectrum of the LIG/CuO-5; high-resolution XPS spectra of C 1s (b), O 1s (c) and Cu 2p (d).

    图 6  (a) 构建的LIG, CuO和LIG/CuO 3D模型和计算得到的功函数; (b) LIG, CuO和 LIG/CuO 的分波态密度(PDOS)图(灰色虚线为费米能级)

    Figure 6.  (a) LIG, CuO and LIG/CuO 3D models and the calculated work functions; (b) the partial density of states (PDOS) of LIG, CuO and LIG/CuO (the gray dotted line is the Fermi level).

    图 7  (a)样品LIG, LIG/CuAc-5, LIG/CuO-2.5, LIG/CuO-5和LIG/CuO-10的J-E曲线; (b) $\ln(J/E^2) \text{-}1/E $曲线; (c)样品相对应的开启阈值(Eth, 对应电流密度1 mA/cm2)和场增减因子(β)关系曲线; (d)样品LIG和LIG/CuO-5场发射稳定性曲线

    Figure 7.  (a) J-E plots of LIG, LIG/CuAc-5, LIG/CuO-2.5, LIG/CuO-5 and LIG/CuO-10; (b) $\ln(J/E^2) \text{-}1/E $ plots; (c) relationship plots of Eth (corresponding to a current density of 1 mA/cm2) and β versus the samples; (d) stability plots of LIG and LIG/CuO-5.

    图 8  LIG/CuO能带结构 (a) 非接触; (b) 接触; (c) 电场作用

    Figure 8.  LIG/CuO band structure: (a) Non-contact; (b) contact; (c) electric field.

    Baidu
  • [1]

    Zhang H, Tang J, Yuan J S, Yamauchi Y, Suzuki T T, Shinya N, Nakajima K, Qin L C 2016 Nat. Nanotechnol. 11 273Google Scholar

    [2]

    Deka N, Subramanian V 2020 IEEE Trans. Electron Devices 67 3753Google Scholar

    [3]

    Xing Y, Zhang Y, Xu N S, Huang H J, Ke Y L, Li B H, Chen J, She J C, Deng S Z 2018 IEEE Trans. Electron Devices 65 1146Google Scholar

    [4]

    Cao G, Lee Y Z, Peng R, Liu Z, Rajaram R, Calderon-Colon X, An L, Wang P, Phan T, Sultana S, Lalush D S, Lu J P, Zhou O 2009 Phys. Med. Biol. 54 2323Google Scholar

    [5]

    Heer W, Châtelain A, Ugarte D 1995 Science 270 1179Google Scholar

    [6]

    郑钦仁, 詹涪至, 折俊艺, 王建宇, 石若立, 孟国栋 2024 73 086101Google Scholar

    Zheng Q R, Zhan B Z, Zhe J Y, Wang J Y, Shi R L, Meng G D 2024 Acta Phys. Sin. 73 086101Google Scholar

    [7]

    Bhopale S R, Jagtap K K, Phatangare A, Kamble S, Dhole S D, Mathe V L, More M A 2023 Appl. Surf. Sci. 619 156752Google Scholar

    [8]

    Guo X, Li Y L, Ding Y Q, Chen Q, Li J S 2019 Mater. Des. 162 293Google Scholar

    [9]

    Deng J H, Liu R N, Zhang Y, Zhu W X, Han A L, Cheng G A 2017 J. Alloys Compd. 723 75Google Scholar

    [10]

    Huang Y X, Zhao H, Li Z L, Hu L L, Wu Y L, Sun F, Meng S, Zhao J M 2023 Adv. Mater. 35 2208362Google Scholar

    [11]

    黄逸轩, 赵继民 2024 光散射学报 36 52Google Scholar

    Huang Y X, Zhao J M 2024 J. Light Scat. 36 52Google Scholar

    [12]

    Hasaien J, Wu Y L, Shi M Z, Zhai Y N, Wu Q, Liu Z, Zhou Y, Chen X. H, Zhao J M 2025 PNAS 122 e2406464122Google Scholar

    [13]

    Jiang L T, Jiang C Y, Tian Y C, Zhao H, Zhang J, Tian Z Y, Fu S H, Liang E J, Wang X C, Jin C Q, Zhao J M 2024 Chin. Phys. Lett. 41 047802Google Scholar

    [14]

    Wu L M, Dong Y Z, Zhao J L, Ma D T, Huang W C, Zhang Y, Wang Y Z, Jiang X T, Xiang Y J, Li J Q, Feng Y Q, Xu J L, Zhang H 2019 Adv. Mater. 31 1807981Google Scholar

    [15]

    You Z H, Qiu Q M, Chen H Y, Feng Y Y, Wang X, Wang Y X, Ying Y B 2020 Biosens. Bioelectron. 150 111896Google Scholar

    [16]

    Zhang J B, Ren M Q, Li Y L, Tour J M 2018 ACS Energy Lett. 3 677Google Scholar

    [17]

    Yoon H, Nah J, Kim H, Ko S, Sharifuzzaman M, Barman S C, Xuan X, Kim J Y, Park J Y 2020 Sensor Actuat. B 311 127866Google Scholar

    [18]

    Lin J, Peng Z W, Liu Y Y, Zepeda F R, Ye R Q, Samuel E L, Yacaman M J, Yakobson B I, Tour J M 2014 Nat. Commun. 5 5714Google Scholar

    [19]

    Chyan Y, Ye R Q, Li Y L, Singh S P, Arnusch C J, Tour J M 2018 ACS Nano 12 2176Google Scholar

    [20]

    Le T S D, Park S B, An J N, Lee P S, Kim Y J 2019 Adv. Funct. Mater. 29 1902771Google Scholar

    [21]

    Wu W B, Liang R X, Lu L S, Wang W T, Ran X, Yue D D 2020 Surf. Coat. Technol. 393 125744Google Scholar

    [22]

    Cheng J F, Lin Z X, Wu D, Liu C L, Cao Z 2022 J. Hazard. Mater. 436 129150.Google Scholar

    [23]

    Ryu C, Do H M, In J B 2024 Appl. Surf. Sci. 643 158696Google Scholar

    [24]

    Rodrigues J, Zanoni J, Gaspar G, Fernandes A J S, Carvalho A F, Santos N F, Monteiro T, Costa F M 2019 Nanoscale Adv. 1 3252Google Scholar

    [25]

    Lal A, Porat H, Hirsch L O, Cahan R, Borenstein A 2024 Appl. Surf. Sci. 643 158660Google Scholar

    [26]

    Ma L A, Chen Y B, Ye X Y, Sun L, Wei Z H, Huang L, Chen H X, Wang Q T, Chen E G 2021 Ceram. Int. 47 27487Google Scholar

    [27]

    Huang X, Chen S, Pan J, Wei Z H, Ye X Y, Wang Q T, Ma L A 2024 Ceram. Int. 50 24205Google Scholar

    [28]

    Perdew J P, Burke K, Wang Y 1996 Phys. Rev. B Condens. Matter 54 16533Google Scholar

    [29]

    Sun Z L, Shao Z G, Wang C L, Yang L 2016 Carbon 110 313Google Scholar

    [30]

    Zhang H W, Sun Y S, Li Q W, Wan C X 2022 ACS Sustainable Chem. Eng. 10 11501Google Scholar

    [31]

    Raveendran K, Ganesh A, Khilar K C 1996 Fuel 75 987Google Scholar

    [32]

    Babinszki B, Sebestyén Z, Jakab E, Kőhalmi L, Bozi J, Várhegyi G, Wang L, Skreiberg Ø, Czégéy Z 2021 Bioresour. Technol. 338 125567Google Scholar

    [33]

    Sugioka K, Cheng Y 2014 Light Sci. Appl. 3 e149Google Scholar

    [34]

    Chen L F, Yu H, Zhong J S, Wu J, Su W T 2018 J. Alloys Compd. 749 60Google Scholar

    [35]

    Keiluweit M, Nico P S, Johnson M G, Kleber M 2010 Environ. Sci. Technol. 44 1247Google Scholar

    [36]

    Yu S J, Wang L Z, Li Q H, Zhang Y G, Zhou H 2022 Mater. Today Sustain. 19 100209Google Scholar

    [37]

    Miao M, Zuo S L, Zhao Y Y, Wang Y F, Xia H A, Tan C, Gao H 2018 Carbon 140 504Google Scholar

    [38]

    Wu J B, Lin M L, Cong X, Liu H N, Tan P H 2018 Chem. Soc. Rev. 47 1822Google Scholar

    [39]

    Arulkumar E, Shree S S, Thanikaikarasan S 2024 J. Mater Sci. Mater. EL 35 198Google Scholar

    [40]

    杨孟骐, 姬宇航, 梁琦, 王长昊, 张跃飞, 张铭, 王波, 王如志 2020 69 167805Google Scholar

    Yang M Q, Ji Y H, Liang Q, Wang C H, Zhang Y F, Zhang M, Wang B, Wang R Z 2020 Acta Phys. Sin. 69 167805Google Scholar

    [41]

    Zhang Y H, Ding H, Liu C X, Zhang J C, Wang C B, Guo W H, Ji Q Y, Zhao J Y, Zi Y Y 2024 Diamond Relat. Mater. 144 110972Google Scholar

    [42]

    Chu Y L, Young S J, Cai D Y, Chu T T 2021 IEEE J. Electron. Devi. 9 1076Google Scholar

    [43]

    Meng G D, Zhan F Z, She J Y, Xie J N, Zheng Q R, Cheng Y H, Yin Z Y 2023 Nanoscale 15 15994Google Scholar

    [44]

    Fan L N, Chen W, Zhou K, Zheng H, Zheng P, Zheng L, Zhang Y 2023 ACS Appl. Electron. Mater. 5 123Google Scholar

  • [1] Zheng Qin-Ren, Zhan Fu-Zhi, She Jun-Yi, Wang Jian-Yu, Shi Ruo-Li, Meng Guo-Dong. Influence of morphological characteristics of graphene on its field emission properties. Acta Physica Sinica, 2024, 73(8): 086101. doi: 10.7498/aps.73.20231784
    [2] Chen Cheng-Cheng, Liu Li-Ying, Wang Ru-Zhi, Song Xue-Mei, Wang Bo, Yan Hui. Preparation of nanostructured GaN films and their field emission enhancement for different substrates. Acta Physica Sinica, 2013, 62(17): 177701. doi: 10.7498/aps.62.177701
    [3] Hu Xiao-Ying, Wang Shu-Min, Pei Yan-Hui, Tian Hong-Wei, Zhu Pin-Wen. One-step synthesis of a carbon nano sheet-scarbon nanotubes composite and its field emission properties. Acta Physica Sinica, 2013, 62(3): 038101. doi: 10.7498/aps.62.038101
    [4] Lu Wen-Hui, Zhang Shuai. Effect of contact resistance on field emission from carbon nanotube. Acta Physica Sinica, 2012, 61(1): 018801. doi: 10.7498/aps.61.018801
    [5] Zhang Pei-Zeng, Li Rui-Shan, Xie Er-Qing, Yang Hua, Wang Xuan, Wang Tao, Feng You-Cai. The fabrication and field emission properties of ZnO nanoparticles-doped diamond-like carbon films by electrochemical deposition. Acta Physica Sinica, 2012, 61(8): 088101. doi: 10.7498/aps.61.088101
    [6] Yang Yan-Ning, Zhang Zhi-Yong, Zhang Fu-Chun, Zhang Wei-Hu, Yan Jun-Feng, Zhai Chun-Xue. Temperature dependence of field emission of nano-diamond. Acta Physica Sinica, 2010, 59(4): 2666-2671. doi: 10.7498/aps.59.2666
    [7] Qin Yu-Xiang, Hu Ming. Field emission properties of titanium carbide-modified carbon nanotubes. Acta Physica Sinica, 2008, 57(6): 3698-3702. doi: 10.7498/aps.57.3698
    [8] Wang Xin-Qing, Li Liang, Chu Ning-Jie, Jin Hong-Xiao, Ge Hong-Liang. Theoretical optimization for field emission current density from carbon nanotubes array. Acta Physica Sinica, 2008, 57(11): 7173-7177. doi: 10.7498/aps.57.7173
    [9] Zhou Jiang, Wei De-Yuan, Xu Jun, Li Wei, Song Feng-Qi, Wan Jian-Guo, Xu Ling, Ma Zhong-Yuan. Electron field emission of nanocrystalline Si prepared by laser crystallization. Acta Physica Sinica, 2008, 57(6): 3674-3678. doi: 10.7498/aps.57.3674
    [10] Zheng Xin-Liang, Li Guang-Shan, Zhong Shou-Xian, Tian Jin-Shou, Li Zhen-Hong, Ren Zhao-Yu. Ablating of carbon nanotube by laser beam and its effect on field emission performance. Acta Physica Sinica, 2008, 57(12): 7912-7918. doi: 10.7498/aps.57.7912
    [11] Yuan Guang, Guo Da-Bo, Gu Chang-Zhi, Dou Yan, Song Hang. Field emission from single diamond particle. Acta Physica Sinica, 2007, 56(1): 143-146. doi: 10.7498/aps.56.143
    [12] Lei Da, Zeng Le-Yong, Xia Yu-Xue, Chen Song, Liang Jing-Qiu, Wang Wei-Biao. Study on field enhancement of a normal-gated field emission nanowire cold cathode. Acta Physica Sinica, 2007, 56(11): 6616-6622. doi: 10.7498/aps.56.6616
    [13] Luo Min, Wang Xin-Qing, Ge Hong-Liang, Wang Miao, Xu Ya-Bo, Chen Qiang, Li Li-Pei, Chen Lei, Guan Gao-Fei, Xia Juan, Jiang Feng. Influence of arrangement and matrix number on the field emission from conductive nanowire array. Acta Physica Sinica, 2006, 55(11): 6061-6067. doi: 10.7498/aps.55.6061
    [14] Hu Li-Qin, Lin Zhi-Xian, Guo Tai-Liang, Yao Liang, Wang Jing-Jing, Yang Chun-Jian, Zhang Yong-Ai, Zheng Ke-Lu. Field-emission properties of aligned and unaligned In2O3 nanowires. Acta Physica Sinica, 2006, 55(11): 6136-6140. doi: 10.7498/aps.55.6136
    [15] Li Qiang, Liang Er-Jun. Comparison of field emission of carbon, carbon nitride and boron carbon nitride nanotubes. Acta Physica Sinica, 2005, 54(12): 5931-5936. doi: 10.7498/aps.54.5931
    [16] Wang Xin-Qing, Wang Miao, Li Zhen-Hua, Yang Bing, Wang Feng-Fei, He Pi-Mo, Xu Ya-Bo. Calculation of the enhancement factor for the individual conductive nanowire in field emission. Acta Physica Sinica, 2005, 54(3): 1347-1351. doi: 10.7498/aps.54.1347
    [17] Song Jiao-Hua, Zhang Geng-Min, Zhang Zhao-Xiang, Sun Ming-Yan, Xue Zeng-Quan. A study of field emission of an array of multi-walled carbon nanotubes*. Acta Physica Sinica, 2004, 53(12): 4392-4397. doi: 10.7498/aps.53.4392
    [18] Li Hai-Jun, Gu Chang-Zhi, Dou Yan, Li Jun-Jie. Field emission from individual vertically carbon nanofibers. Acta Physica Sinica, 2004, 53(7): 2258-2262. doi: 10.7498/aps.53.2258
    [19] Zhang Zhao-Xiang, Zhang Geng-Min, Hou Shi-Min, Zhang Hao, Gu Zhen-Nan, Liu Wei-Min, Zhao Xing-Yu, Xue Zeng-Quan. FEM study on the influence of oxygen on field emission of singlewalled carbon nanotubes. Acta Physica Sinica, 2003, 52(5): 1282-1286. doi: 10.7498/aps.52.1282
    [20] SUN JIAN-PING, ZHANG ZHAO-XIANG, HOU SHI-MIN, ZHAO XING-YU, SHI ZU-JIN, GU ZHEN-NAN, LIU WEI-MIN, XUE ZENG-QUAN. A STUDY OF FIELD EMISSION OF SINGLE-WALLED CARBONNANOTUBES USING FIELD EMISSION MICROSCOPY. Acta Physica Sinica, 2001, 50(9): 1805-1809. doi: 10.7498/aps.50.1805
Metrics
  • Abstract views:  343
  • PDF Downloads:  11
  • Cited By: 0
Publishing process
  • Received Date:  24 March 2025
  • Accepted Date:  21 April 2025
  • Available Online:  10 May 2025
  • Published Online:  05 July 2025
  • /

    返回文章
    返回
    Baidu
    map