Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Reparation and Field Emission Properties of LIG/CuO Composites by Laser Irradiation of Copper-containing Cork

MA Li-An HUANG Xu CHEN Song WEI Zhaohui SUN Lei YE Xiaoyun

Citation:

Reparation and Field Emission Properties of LIG/CuO Composites by Laser Irradiation of Copper-containing Cork

MA Li-An, HUANG Xu, CHEN Song, WEI Zhaohui, SUN Lei, YE Xiaoyun
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • Three-dimensional (3D) graphene materials have excellent electronic emission performance and mechanical stability, showing significant advantages in the field of high current density field emitters. In this study, copper oxide modified three-dimensional graphene composites (LIG/CuO) were prepared in situ by a femtosecond laser one-step method, which realized the simultaneous regulation of cork carbonization and copper oxidation. Shallow copper-rich precursors were constructed by copper salt infiltration and ascorbic acid reduction. Laser irradiation was used to synchronously induce the carbonization of cellulose into few-layer graphene and the transformation of Cu to CuO, forming a three-dimensional fiber network of microcrystalline graphene coated with CuO nanoparticles (30-80 nm). The structure exhibits excellent field emission performance: the prepared pure LIG threshold field is ~ 2.12 V/μm, the field enhancement factor is ~ 8223. Optimized CuO loading, the threshold field of LIG/CuO-5 is reduced to 1.57V/μm, the field enhancement factor is up to ~ 8823, and the ultra-high current density of 22.71 mA/cm2 is achieved at 2.89 V/μm. DFT calculations reveal that the electrons at the heterojunction interface transfer from CuO to graphene, which reduces the work function of graphene from 4.833 eV to 4.677 eV, and the band bending of CuO surface synergistically reduces the tunneling barrier. In addition, the local electric field enhancement effect of CuO nanoparticles and the optimized distribution density synergistically increase the effective emission point density. The performance improvement is mainly attributed to three synergistic effects: (Ⅰ) the three-dimensional porous graphene network provides rich tip emission sites; (Ⅱ) the introduction of CuO nanoparticles reduces the work function of the composite material from 4.833 eV to 4.667 eV, effectively decreasing the electron escape barrier; (Ⅲ) the heterojunction interface forms a directional electron migration channel under a positive bias electric field, combined with the excellent conductivity of LIG, which significantly improves the electron tunneling efficiency.
  • [1]

    Zhang H, Tang J, Yuan J, Yamauchi Y, Suzuki T T, Shinya N, Nakajima K, Qin L C 2016Nat. Nanotechnol. 11273.

    [2]

    Deka N, Subramanian V 2020IEEE Trans. Electron Devices 67 3753.

    [3]

    Xing Y, Zhang Y, Xu N S, Huang H J, Ke Y L, Li B H, Chen J, She J C, Deng S Z 2018IEEE Trans. Electron Devices 65 1146.

    [4]

    Cao G, Lee Y Z, Peng R, Liu Z, Rajaram R, Calderon-Colon X, An L, Wang P, Phan T, Sultana S, Lalush D S, Lu J P, Zhou O 2009Phys. Med. Biol. 54 2323.

    [5]

    Heer W, Châtelain A, Ugarte D 1995Science 2701179.

    [6]

    Zheng Q R, Zhan B Z, Zhe J Y, Wang J Y, Shi R L, Meng G D 2024Acta Phys. Sin. 73 086101(in Chinese) [郑钦仁詹涪至折俊艺王建宇石若立孟国栋2024 73 086101].

    [7]

    Bhopale S R, Jagtap K K, Phatangare A, Kamble S, Dhole S D, Mathe VL, More M A 2023Appl. Surf. Sci. 619 156752.

    [8]

    Guo X, Li Y L, Ding Y Q, Chen Q, Li J S 2019Mater. Des. 162293.

    [9]

    Deng J H, Liu R N, Zhang Y, Zhu W X, Han A L, Cheng G A 2017 J. Alloys Compd. 72375.

    [10]

    Huang Y X, Zhao H, Li Z L, Hu L L, Wu Y L, Sun F, Meng S, Zhao J M 2023Adv. Mater. 35 2208362

    [11]

    Huang Y X, Zhao J M 2024The Journal of Light Scattering. 36 52. (in Chinese) [黄逸轩赵继民2024光散射学报36 52].

    [12]

    Hasaien J, Wu Y L, Shi M Z, Zhai Y N, Wu Q, Liu Z, Zhou Y, Chen X.H, Zhao J M 2025PNAS 122e2406464122.

    [13]

    Jiang L T, Jiang C Y, Tian Y C, Zhao H, Zhang J, Tian Z Y, Fu S H, Liang E J, Wang X C, Jin C Q, Zhao J M 2024Chinese Phys. Lett. 41 047802.

    [14]

    Wu L M, Dong Y Z, Zhao J L, Ma D T, Huang W C, Zhang Y, Wang Y Z, Jiang X T, Xiang Y J, Li J Q, Feng Y Q, Xu J L, Zhang H 2019Adv. Mater. 31 1807981.

    [15]

    You Z H, Qiu Q M, Chen H Y, Feng Y Y, Wang X, Wang Y X, Ying Y B 2020Biosens. Bioelectron. 150 111896.

    [16]

    Zhang J B, Ren M Q, Li Y L, Tour J M 2018ACS Energy Lett. 3677.

    [17]

    Yoon H, Nah J, Kim H, Ko S, Sharifuzzaman M, Barman S C, Xuan X, Kim J Y, Park J Y 2020Sens. Actuators, B 311127866.

    [18]

    Lin J, Peng Z W, Liu Y Y, Zepeda F R, Ye R Q, Samuel E L, Yacaman M J, Yakobson B I, Tour J M 2014Nat. Commun. 55714.

    [19]

    Chyan Y, Ye R Q, Li Y L, Singh S P, Arnusch C J, Tour J M 2018ACS Nano 122176.

    [20]

    Le T S D, Park S B, An J N, Lee P S, Kim Y J 2019Adv. Funct. Mater. 29 1902771.

    [21]

    Wu W B, Liang R X, Lu L S, Wang W T, Ran X, Yue D D 2020Surf. Coat. Technol. 393 125744.

    [22]

    Cheng J F, Lin Z X, Wu D, Liu C L, Cao Z 2022J. Hazard. Mater. 436 129150.

    [23]

    Ryu C, Do H M, In J B. 2024Appl. Surf. Sci. 643 158696.

    [24]

    Rodrigues J, Zanoni J, Gaspar G, Fernandes A J S, Carvalho A F, Santos N F, Monteiro T, Costa F M 2019Nanoscale Adv. 1 3252.

    [25]

    Lal A, Porat H, Hirsch L O, Cahan R, Borenstein A 2024Appl. Surf. Sci. 643 158660.

    [26]

    Ma L A, Chen Y B, Ye XY, Sun L, Wei Z H, Huang L, Chen H X, Wang Q T, Chen E G 2021Ceram. Int. 4727487.

    [27]

    Huang X, Chen S, Pan J, Wei Z H, Ye X Y, Wang Q T, Ma L A 2024Ceram. Int. 5024205.

    [28]

    Perdew J P, Burke K, Wang Y 1996Phys. Rev. B: Condens. Matter 5416533.

    [29]

    Sun Z L, Shao Z G, Wang C L, Yang L 2016 Carbon 110 313.

    [30]

    Zhang H W, Sun Y S, Li Q W, Wan C X 2022ACS Sustainable Chem. Eng. 10 11501.

    [31]

    Raveendran K, Ganesh A, Khilar K C. 1996Fuel 75987.

    [32]

    Babinszki B, Sebestyén Z, Jakab E, Kőhalmi L, Bozi J, Várhegyi G, Wang L, Skreiberg Ø, Czégéy Z 2021Bioresour. Technol. 338125567.

    [33]

    Sugioka K, Cheng Y 2014 Light Sci. Appl. 3 e149.

    [34]

    Chen L F, Yu H, Zhong J S, Wu J, Su W T 2018J. Alloys Compd. 749 60.

    [35]

    Keiluweit M, Nico P S, Johnson M G, Kleber M 2010Environ. Sci. Technol. 441247.

    [36]

    Yu S J, Wang L Z, Li Q H, Zhang Y G, Zhou H 2022Mater. Today Sustain. 19 100209.

    [37]

    Miao M, Zuo S L, Zhao Y Y, Wang Y F, Xia H A, Tan C, Gao H 2018Carbon, 140504.

    [38]

    Wu J B, Lin M L, Cong X, Liu H N, Tan P H 2018Chem. Soc. Rev. 471822.

    [39]

    Arulkumar E, Shree S S, Thanikaikarasan S 2024J. Mater Sci. Mater. EL 35198.

    [40]

    Yang M Q, Ji Y H, Liang Q, Wang C H, Zhang Y F, Zhang M, Wang B, Wang R Z 2020 Acta Phys. Sin. 69 167805. (in Chinese) [杨孟骐姬宇航梁琦王长昊张跃飞张铭王波王如志2020 69 167805].

    [41]

    Zhang Y H, Ding H, Liu C X, Zhang J C, Wang C B, Guo W H, Ji Q Y, Zhao J Y, Zi Y Y 2024Diamond Relat. Mater. 144110972.

    [42]

    Chu Y L, Young S J, Cai D Y, Chu T T 2021IEEE J. Electron. Devi. 91076.

    [43]

    Meng G D, Zhan F Z, She J Y, Xie J N, Zheng Q R, Cheng Y H, Yin Z Y 2023Nanoscale 15 15994.

    [44]

    Fan L N, Chen W, Zhou K, Zheng H, Zheng P, Zheng L, Zhang Y 2023ACS Appl. Electron. Mater. 5 123.

  • [1] Zheng Qin-Ren, Zhan Fu-Zhi, She Jun-Yi, Wang Jian-Yu, Shi Ruo-Li, Meng Guo-Dong. Influence of morphological characteristics of graphene on its field emission properties. Acta Physica Sinica, doi: 10.7498/aps.73.20231784
    [2] Chen Cheng-Cheng, Liu Li-Ying, Wang Ru-Zhi, Song Xue-Mei, Wang Bo, Yan Hui. Preparation of nanostructured GaN films and their field emission enhancement for different substrates. Acta Physica Sinica, doi: 10.7498/aps.62.177701
    [3] Hu Xiao-Ying, Wang Shu-Min, Pei Yan-Hui, Tian Hong-Wei, Zhu Pin-Wen. One-step synthesis of a carbon nano sheet-scarbon nanotubes composite and its field emission properties. Acta Physica Sinica, doi: 10.7498/aps.62.038101
    [4] Lu Wen-Hui, Zhang Shuai. Effect of contact resistance on field emission from carbon nanotube. Acta Physica Sinica, doi: 10.7498/aps.61.018801
    [5] Zhang Pei-Zeng, Li Rui-Shan, Xie Er-Qing, Yang Hua, Wang Xuan, Wang Tao, Feng You-Cai. The fabrication and field emission properties of ZnO nanoparticles-doped diamond-like carbon films by electrochemical deposition. Acta Physica Sinica, doi: 10.7498/aps.61.088101
    [6] Yang Yan-Ning, Zhang Zhi-Yong, Zhang Fu-Chun, Zhang Wei-Hu, Yan Jun-Feng, Zhai Chun-Xue. Temperature dependence of field emission of nano-diamond. Acta Physica Sinica, doi: 10.7498/aps.59.2666
    [7] Qin Yu-Xiang, Hu Ming. Field emission properties of titanium carbide-modified carbon nanotubes. Acta Physica Sinica, doi: 10.7498/aps.57.3698
    [8] Wang Xin-Qing, Li Liang, Chu Ning-Jie, Jin Hong-Xiao, Ge Hong-Liang. Theoretical optimization for field emission current density from carbon nanotubes array. Acta Physica Sinica, doi: 10.7498/aps.57.7173
    [9] Zhou Jiang, Wei De-Yuan, Xu Jun, Li Wei, Song Feng-Qi, Wan Jian-Guo, Xu Ling, Ma Zhong-Yuan. Electron field emission of nanocrystalline Si prepared by laser crystallization. Acta Physica Sinica, doi: 10.7498/aps.57.3674
    [10] Zheng Xin-Liang, Li Guang-Shan, Zhong Shou-Xian, Tian Jin-Shou, Li Zhen-Hong, Ren Zhao-Yu. Ablating of carbon nanotube by laser beam and its effect on field emission performance. Acta Physica Sinica, doi: 10.7498/aps.57.7912
    [11] Yuan Guang, Guo Da-Bo, Gu Chang-Zhi, Dou Yan, Song Hang. Field emission from single diamond particle. Acta Physica Sinica, doi: 10.7498/aps.56.143
    [12] Lei Da, Zeng Le-Yong, Xia Yu-Xue, Chen Song, Liang Jing-Qiu, Wang Wei-Biao. Study on field enhancement of a normal-gated field emission nanowire cold cathode. Acta Physica Sinica, doi: 10.7498/aps.56.6616
    [13] Hu Li-Qin, Lin Zhi-Xian, Guo Tai-Liang, Yao Liang, Wang Jing-Jing, Yang Chun-Jian, Zhang Yong-Ai, Zheng Ke-Lu. Field-emission properties of aligned and unaligned In2O3 nanowires. Acta Physica Sinica, doi: 10.7498/aps.55.6136
    [14] Luo Min, Wang Xin-Qing, Ge Hong-Liang, Wang Miao, Xu Ya-Bo, Chen Qiang, Li Li-Pei, Chen Lei, Guan Gao-Fei, Xia Juan, Jiang Feng. Influence of arrangement and matrix number on the field emission from conductive nanowire array. Acta Physica Sinica, doi: 10.7498/aps.55.6061
    [15] Li Qiang, Liang Er-Jun. Comparison of field emission of carbon, carbon nitride and boron carbon nitride nanotubes. Acta Physica Sinica, doi: 10.7498/aps.54.5931
    [16] Wang Xin-Qing, Wang Miao, Li Zhen-Hua, Yang Bing, Wang Feng-Fei, He Pi-Mo, Xu Ya-Bo. Calculation of the enhancement factor for the individual conductive nanowire in field emission. Acta Physica Sinica, doi: 10.7498/aps.54.1347
    [17] Li Hai-Jun, Gu Chang-Zhi, Dou Yan, Li Jun-Jie. Field emission from individual vertically carbon nanofibers. Acta Physica Sinica, doi: 10.7498/aps.53.2258
    [18] Song Jiao-Hua, Zhang Geng-Min, Zhang Zhao-Xiang, Sun Ming-Yan, Xue Zeng-Quan. A study of field emission of an array of multi-walled carbon nanotubes*. Acta Physica Sinica, doi: 10.7498/aps.53.4392
    [19] Zhang Zhao-Xiang, Zhang Geng-Min, Hou Shi-Min, Zhang Hao, Gu Zhen-Nan, Liu Wei-Min, Zhao Xing-Yu, Xue Zeng-Quan. FEM study on the influence of oxygen on field emission of singlewalled carbon nanotubes. Acta Physica Sinica, doi: 10.7498/aps.52.1282
    [20] SUN JIAN-PING, ZHANG ZHAO-XIANG, HOU SHI-MIN, ZHAO XING-YU, SHI ZU-JIN, GU ZHEN-NAN, LIU WEI-MIN, XUE ZENG-QUAN. A STUDY OF FIELD EMISSION OF SINGLE-WALLED CARBONNANOTUBES USING FIELD EMISSION MICROSCOPY. Acta Physica Sinica, doi: 10.7498/aps.50.1805
Metrics
  • Abstract views:  29
  • PDF Downloads:  2
  • Cited By: 0
Publishing process
  • Available Online:  10 May 2025

/

返回文章
返回
Baidu
map