-
Nanocrystalline silicon films were prepared from SiH4 highly diluted with hydrogen by plasma enhanced chemical vapor deposition. The influence of excitation frequency on their growth properties was investigated. The cross-section transmisson electron microscopy images show that all the films grow with certain fastigiated structure in the crystalline region. However, the films deposited at 13.56 MHz undergo a transition from amorphous incubation layer to crystalline structure. In contrast, for the films deposited at a high excitation frequency (40.68 MHz), nanocrystalline silicon grains can directly grow on the amorphous substrates. Furthermore, the results of Raman spectra and Fourier transform infrared spectroscopy manifest that the nanocrystalline silicon films deposited at high excitation frequency (40.68 MHz) possess high crystalline fraction, low hydrogen content and small microstructure factor.
-
Keywords:
- VHF-plasma enhanced chemical vapor deposition /
- high hydrogen dilution /
- nanocrystalline silicon
[1] Peng W B, Liu S Y, Xiao H B, Zhang C S, Shi M J, Zeng X B, Xu Y Y, Kong G L, Yu Y D 2009 Acta Phys. Sin. 58 5716 (in Chinese) [彭文博、刘石勇、肖海波、张长沙、石明吉、曾湘波、徐艳月、孔光临、俞育德 2009 58 5716]
[2] Li J S, Wang J X, Yin M, Gao P Q, Chen Q, Li Y L, He D Y 2008 J. Cryst. Growth 310 4340
[3] Huang S Y, Wang L, Ganguly G, Xu J, Huang X F, Matsuda A, Chen K J 2000 J. Non-Cryst. Solids 266—269 347
[4] Rui Y J, Chen D Y, Xu J, Zhang Y J, Yang L, Mei J X, Ma Z Y, Cen Z H, Li W, Xu L, Huang X F, Chen K J 2005 J. Appl. Phys. 98 033532
[5] Cabarrocas P R, Hamma S 1999 Thin Solid Films 23—26 337
[6] Amanatides E, Mataras D, Rapakoulias D E 2001 J. Appl. Phys. 90 5799
[7] Zhou J H, Ikuta K, Yasuda T, Umeda T, Yamasaki S, Tanaka K 1997 Appl. Phys. Lett. 71 1997
[8] Houben L, Luysberg M, Hapke P, Carius R, Finger F, Wagner 1998 Philos. Mag. A 77 1447
[9] Lucovsky G, Nemanich R J, Knights J C 1978 Phys. Rev. B 19 2064
[10] Manfredotti C, Fizzotti F, Boevo M, Pastorino P, Polesell P, Vittone E 1994 Phys. Rev. B 50 18046
[11] Han X Y, Geng X H, Hou G F, Zhang X D, Li G J,Yuan Y J, Wei C C, Sun J, Zhang D K, Zhao Y 2009 Acta Phys. Sin. 58 1344 (in Chinese) [韩晓艳、耿新华、侯国付、张晓丹、李贵君、袁育杰、魏长春、孙 建、张德坤、赵 颖2009 58 1344]
[12] Xu J, Chen K J, Feng D, Miyazaki S, Hirose M 1996 Solid State Commun. 99 269
[13] Gu J, Zhu M, Wang L, Liu F, Zhou B, Zhou Y, Ding K, Li G 2005 J. Appl. Phys. 98 093505
-
[1] Peng W B, Liu S Y, Xiao H B, Zhang C S, Shi M J, Zeng X B, Xu Y Y, Kong G L, Yu Y D 2009 Acta Phys. Sin. 58 5716 (in Chinese) [彭文博、刘石勇、肖海波、张长沙、石明吉、曾湘波、徐艳月、孔光临、俞育德 2009 58 5716]
[2] Li J S, Wang J X, Yin M, Gao P Q, Chen Q, Li Y L, He D Y 2008 J. Cryst. Growth 310 4340
[3] Huang S Y, Wang L, Ganguly G, Xu J, Huang X F, Matsuda A, Chen K J 2000 J. Non-Cryst. Solids 266—269 347
[4] Rui Y J, Chen D Y, Xu J, Zhang Y J, Yang L, Mei J X, Ma Z Y, Cen Z H, Li W, Xu L, Huang X F, Chen K J 2005 J. Appl. Phys. 98 033532
[5] Cabarrocas P R, Hamma S 1999 Thin Solid Films 23—26 337
[6] Amanatides E, Mataras D, Rapakoulias D E 2001 J. Appl. Phys. 90 5799
[7] Zhou J H, Ikuta K, Yasuda T, Umeda T, Yamasaki S, Tanaka K 1997 Appl. Phys. Lett. 71 1997
[8] Houben L, Luysberg M, Hapke P, Carius R, Finger F, Wagner 1998 Philos. Mag. A 77 1447
[9] Lucovsky G, Nemanich R J, Knights J C 1978 Phys. Rev. B 19 2064
[10] Manfredotti C, Fizzotti F, Boevo M, Pastorino P, Polesell P, Vittone E 1994 Phys. Rev. B 50 18046
[11] Han X Y, Geng X H, Hou G F, Zhang X D, Li G J,Yuan Y J, Wei C C, Sun J, Zhang D K, Zhao Y 2009 Acta Phys. Sin. 58 1344 (in Chinese) [韩晓艳、耿新华、侯国付、张晓丹、李贵君、袁育杰、魏长春、孙 建、张德坤、赵 颖2009 58 1344]
[12] Xu J, Chen K J, Feng D, Miyazaki S, Hirose M 1996 Solid State Commun. 99 269
[13] Gu J, Zhu M, Wang L, Liu F, Zhou B, Zhou Y, Ding K, Li G 2005 J. Appl. Phys. 98 093505
Catalog
Metrics
- Abstract views: 8516
- PDF Downloads: 982
- Cited By: 0