Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Simulations of electrical asymmetry effect on N2-H2 capacitively coupled plasma by particle-in-cell/Monte Carlo model

Hao Ying-Ying Meng Xiu-Lan Yao Fu-Bao Zhao Guo-Ming Wang Jing Zhang Lian-Zhu

Citation:

Simulations of electrical asymmetry effect on N2-H2 capacitively coupled plasma by particle-in-cell/Monte Carlo model

Hao Ying-Ying, Meng Xiu-Lan, Yao Fu-Bao, Zhao Guo-Ming, Wang Jing, Zhang Lian-Zhu
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • A N2-H2 capacitively coupled rf discharge has potential applications in etching of organic low dielectric constant (low-k) material for microelectronics technology. In this paper, we investigate the characteristic and electrical asymmetry effect (EAE) on the N2-H2 capacitively coupled plasma used for low-k material etching by particle-in-cell/Monte Carlo (PIC/MC) model, in which the two frequency sources of 13.56 MHz and 27.12 MHz are applied separately to the two electrodes in geometrically in symmetry. It is found that the plasma density profiles, the ion flux density profiles and the energy distribution of ion bombarding electrodes can be changed by adjusting the phase angle θ between the two harmonics. When the phase angle θ is 0°, the density of primary ion (H3+) near low frequencie electrode (LFE) (wafer) is smallest, whereas flux and average energy of ion (H+, H3+, H2+) bombarding LFE are biggest; if the phase angle θ is tuned from 0° to 90°, the dc self-bias increases almost linearly from -103 V to 106 V, ion flux bombarding the LFE decreases by ±18%, the maximum of the ion bombarding energy at the LFE decreases by a factor of 2.5. For the N2-H2 capacitively coupled rf discharge, for the case of two frequencies (13.56 MHz/27.12 MHz) applied separately to the two electrodes, can realize separate control of ion energy and flux via the EAE, and is generally in qualitative agreement with experimental and modeling investigation on the Ar and O2 plasma for a dual-frequency voltage source of 13.56 MHz and 27.12 MHz is applied to the powered electrode. This work supplies a references basis for experimental research and technology that the EAE on the H2-N2 plasmas is used for organic low-k material etching process.
    • Funds: Project supported by the Hebei Natural Science Foundation of China (Grant No. A2012205072).
    [1]

    Chen S T, Chen G S, Yang T J, Chang T C, Yang W H 2003 Electrochem. Solid-State Lett. 6 4

    [2]

    Nagai H, Hiramatsu M, Hori M, Goto T 2003 Jpn. J. Appl. Phys. 42 L212

    [3]

    van Laer K, Tinck S, Samara V, de Marneffe J F, Bogaerts A 2013 Plasma Sources Sci. Technol. 22 025011

    [4]

    Liu X M, Song Y H, Wang Y N 2011 Chin. Phys. B 20 065205

    [5]

    Jiang X Z, Liu Y X, Bi Z H, Lu W Q, Wang Y N 2012 Acta Phys. Sin. 61 015204(in Chinese)[蒋相站, 刘永新, 毕振华, 陆文琪, 王友年 2012 61 015204]

    [6]

    Lee J K, Manuilenko O V, Babaeva N Y, Kim H C, Shon J W 2005 Plasma Sources Sci. Technol. 14 89

    [7]

    Kawamura E, Lieberman M A, Lichtenberg A J 2006 Phys. Plasmas 13 053506

    [8]

    Heil B G, Czarnetzki U, Brinkmann R P, Mussenbrock T 2008 J. Phys. D: Appl. Phys. 41 165202

    [9]

    Donkó Z, Schulze J, Heil B G, Czarnetzki U 2009 J. Phys. D: Appl. Phys. 42 025205

    [10]

    Czarnetzki U, Schulze J, Schunge E, Donko Z 2011 Plasma Sources Sci. Technol. 20 024010

    [11]

    Schulze J, Schngel E, Czarnetzki U, Donkó Z 2009 J. Appl. Phys. 106 063307

    [12]

    Schulze J, Donko Z, Luggenholscher D, Czarnetzki U 2009 Plasma Sources Sci. Technol. 18 034011

    [13]

    Schulze J, Derzsi A, Donko Z 2011 Plasma Sources Sci. Technol. 20 045008

    [14]

    Schulze J, Schungel E, Donko Z, Czarnetzki U 2010 Plasma Sources Sci. Technol. 19 045028

    [15]

    Schungel E, Eremin D, Schulze J, Mussenbrock T, Czarnetzki U 2012 J. Appl. Phys. 112 053302

    [16]

    Zhang Q Z, Jiang W, Hou L J, Wang Y N 2011 J. Appl. Phys. 109 013308

    [17]

    Schungel E, Zhang Q Z, Iwashita S, Schulze J, Hou L J, Wang Y N, Czarnetzki U 2011 J. Phys. D: Appl. Phys. 44 285205

    [18]

    Zhang Q Z, Zhao S X, Jiang W, Wang Y N 2012 J. Phys. D: Appl. Phys. 45 305203

    [19]

    Shon C H, Makabe T 2004 IEEE Trans. Plasma Sci. 32 390

    [20]

    Ishihara K, Shimada T, Yagisawa T, Makabe T 2006 Plasma Phys. Control. Fusion 48 B99

    [21]

    Zhang L Z, Yao F B, Zhao G M, Hao Y Y, Sun Q 2014 Plasma Sci. Technol. 16 203

    [22]

    Uchida S, Takashima S, Hori M, Fukasawa M, Ohshima K, Nagahata K, Tatsumi T 2008 J. Appl. Phys. 103 073303

    [23]

    Nanbu K 2000 IEEE Trans. Plasma Sci. 28 917

    [24]

    Zhang L Z, Meng X L, Zhang S, Gao S X, Zhao G M 2013 Acta Phys. Sin. 62 075201(in Chinese)[张连珠, 孟秀兰, 张素, 高书侠, 赵国明 2013 62 075201]

    [25]

    Wakayama G, Nanbu K 2003 IEEE Trans. Plasma Sci. 31 638

    [26]

    Itikawa Y, Hayashi M, Ichimura A 1986 J. Phys. Chem. Ref. Data. 15 985

    [27]

    Itikawa Y 2006 J. Phys. Chem. Ref. Data. 35 31

    [28]

    Bogaerts A, Gijbels R 2002 Spectrochim. Acta B 57 1071

    [29]

    Itikawa Y, Yoon J S, Song M Y, Han J M, Hwang S H 2008 J. Phys. Chem. Ref. Data. 37 913

    [30]

    Phelps A V 1991 J. Phys. Chem. Ref. Data. 20 557

    [31]

    Tosi P, Dmitrijev O, Bassi B 1992 J. Chem. Phys. 97 3333

    [32]

    Phelps A V 1990 J. Phys. Chem. Ref. Data. 19 653

    [33]

    Phelps A V 2009 Phys. Rev. E 79 066401

    [34]

    Simko T, Martisovits V 1997 Phys. Rev. E 56 5908

  • [1]

    Chen S T, Chen G S, Yang T J, Chang T C, Yang W H 2003 Electrochem. Solid-State Lett. 6 4

    [2]

    Nagai H, Hiramatsu M, Hori M, Goto T 2003 Jpn. J. Appl. Phys. 42 L212

    [3]

    van Laer K, Tinck S, Samara V, de Marneffe J F, Bogaerts A 2013 Plasma Sources Sci. Technol. 22 025011

    [4]

    Liu X M, Song Y H, Wang Y N 2011 Chin. Phys. B 20 065205

    [5]

    Jiang X Z, Liu Y X, Bi Z H, Lu W Q, Wang Y N 2012 Acta Phys. Sin. 61 015204(in Chinese)[蒋相站, 刘永新, 毕振华, 陆文琪, 王友年 2012 61 015204]

    [6]

    Lee J K, Manuilenko O V, Babaeva N Y, Kim H C, Shon J W 2005 Plasma Sources Sci. Technol. 14 89

    [7]

    Kawamura E, Lieberman M A, Lichtenberg A J 2006 Phys. Plasmas 13 053506

    [8]

    Heil B G, Czarnetzki U, Brinkmann R P, Mussenbrock T 2008 J. Phys. D: Appl. Phys. 41 165202

    [9]

    Donkó Z, Schulze J, Heil B G, Czarnetzki U 2009 J. Phys. D: Appl. Phys. 42 025205

    [10]

    Czarnetzki U, Schulze J, Schunge E, Donko Z 2011 Plasma Sources Sci. Technol. 20 024010

    [11]

    Schulze J, Schngel E, Czarnetzki U, Donkó Z 2009 J. Appl. Phys. 106 063307

    [12]

    Schulze J, Donko Z, Luggenholscher D, Czarnetzki U 2009 Plasma Sources Sci. Technol. 18 034011

    [13]

    Schulze J, Derzsi A, Donko Z 2011 Plasma Sources Sci. Technol. 20 045008

    [14]

    Schulze J, Schungel E, Donko Z, Czarnetzki U 2010 Plasma Sources Sci. Technol. 19 045028

    [15]

    Schungel E, Eremin D, Schulze J, Mussenbrock T, Czarnetzki U 2012 J. Appl. Phys. 112 053302

    [16]

    Zhang Q Z, Jiang W, Hou L J, Wang Y N 2011 J. Appl. Phys. 109 013308

    [17]

    Schungel E, Zhang Q Z, Iwashita S, Schulze J, Hou L J, Wang Y N, Czarnetzki U 2011 J. Phys. D: Appl. Phys. 44 285205

    [18]

    Zhang Q Z, Zhao S X, Jiang W, Wang Y N 2012 J. Phys. D: Appl. Phys. 45 305203

    [19]

    Shon C H, Makabe T 2004 IEEE Trans. Plasma Sci. 32 390

    [20]

    Ishihara K, Shimada T, Yagisawa T, Makabe T 2006 Plasma Phys. Control. Fusion 48 B99

    [21]

    Zhang L Z, Yao F B, Zhao G M, Hao Y Y, Sun Q 2014 Plasma Sci. Technol. 16 203

    [22]

    Uchida S, Takashima S, Hori M, Fukasawa M, Ohshima K, Nagahata K, Tatsumi T 2008 J. Appl. Phys. 103 073303

    [23]

    Nanbu K 2000 IEEE Trans. Plasma Sci. 28 917

    [24]

    Zhang L Z, Meng X L, Zhang S, Gao S X, Zhao G M 2013 Acta Phys. Sin. 62 075201(in Chinese)[张连珠, 孟秀兰, 张素, 高书侠, 赵国明 2013 62 075201]

    [25]

    Wakayama G, Nanbu K 2003 IEEE Trans. Plasma Sci. 31 638

    [26]

    Itikawa Y, Hayashi M, Ichimura A 1986 J. Phys. Chem. Ref. Data. 15 985

    [27]

    Itikawa Y 2006 J. Phys. Chem. Ref. Data. 35 31

    [28]

    Bogaerts A, Gijbels R 2002 Spectrochim. Acta B 57 1071

    [29]

    Itikawa Y, Yoon J S, Song M Y, Han J M, Hwang S H 2008 J. Phys. Chem. Ref. Data. 37 913

    [30]

    Phelps A V 1991 J. Phys. Chem. Ref. Data. 20 557

    [31]

    Tosi P, Dmitrijev O, Bassi B 1992 J. Chem. Phys. 97 3333

    [32]

    Phelps A V 1990 J. Phys. Chem. Ref. Data. 19 653

    [33]

    Phelps A V 2009 Phys. Rev. E 79 066401

    [34]

    Simko T, Martisovits V 1997 Phys. Rev. E 56 5908

  • [1] Zhang Yu-Han, Zhao Xin-Qian, Liang Ying-Shuang, Guo Yuan-Yuan. Numerical simulation of inductively coupled Ar/O2 plasma. Acta Physica Sinica, 2024, 73(13): 135201. doi: 10.7498/aps.73.20240436
    [2] Yang Nan-Nan, Wang Shang-Min, Zhang Jia-Liang, Wen Xiao-Qiong, Zhao Kai. Improved electro-mechanical model and energy conversion efficiency analysis of pulsed plasma thrusters. Acta Physica Sinica, 2024, 73(21): 215202. doi: 10.7498/aps.73.20241117
    [3] Cao Li-Yang, Ma Xiao-Ping, Deng Li-Li, Lu Man-Ting, Xin Yu. Axial diagnosis of radio-frequency capacitively coupled Ar/O2 plasma. Acta Physica Sinica, 2021, 70(11): 115204. doi: 10.7498/aps.70.20202113
    [4] Wang Fang, Chen Ya-Ke, Li Chuan-Qiang, Ma Tao, Lu Ying-Hui, Liu Heng, Jin Chan. Porous silicon - calcium fluoride plasma waveguide with asymmetric Ag film and its sensitivity characteristics. Acta Physica Sinica, 2021, 70(22): 224201. doi: 10.7498/aps.70.20210704
    [5] Dong Wan, Xu Hai-Wen, Dai Zhong-Ling, Song Yuan-Hong, Wang You-Nian. Gap length effect on discharge mode and etching profiles in asymmetric dual frequency capacitive CF4/Ar discharges. Acta Physica Sinica, 2021, 70(9): 095213. doi: 10.7498/aps.70.20210546
    [6] Hu Yan-Ting, Zhang Yu-Ru, Song Yuan-Hong, Wang You-Nian. Effect of phase angle on plasma characteristics in electrically asymmetric capacitive discharge. Acta Physica Sinica, 2018, 67(22): 225203. doi: 10.7498/aps.67.20181400
    [7] Zhang Kai, Du Chun-Guang, Gao Jian-Cun. Long-range surface plasmon polariton enhancement in double-electrode structure. Acta Physica Sinica, 2017, 66(22): 227302. doi: 10.7498/aps.66.227302
    [8] Yang Yu, Tang Cheng-Shuang, Zhao Yi-Fan, Yu Yi-Qing, Xin Yu. Electronegativity of capacitively coupled Ar+O2 plasma excited at very high frequency. Acta Physica Sinica, 2017, 66(18): 185202. doi: 10.7498/aps.66.185202
    [9] He Man-Li, Wang Xiao, Zhang Ming, Wang Li, Song Rui. Vibrational distribution of H2 (D2 and T2) molecules in low temperature plasma. Acta Physica Sinica, 2014, 63(12): 125201. doi: 10.7498/aps.63.125201
    [10] Zhang Yu-Ping, Liu Ling-Yu, Chen Qi, Feng Zhi-Hong, Wang Jun-Long, Zhang Xiao, Zhang Hong-Yan, Zhang Hui-Yun. Effect of cooling of electron-hole plasma in electrically pumped graphene layer structures with split gates. Acta Physica Sinica, 2013, 62(9): 097202. doi: 10.7498/aps.62.097202
    [11] Zheng Shi-Jian, Ding Fang, Xie Xin-Hua, Tang Zhong-Liang, Zhang Yi-Chuan, Li Huan, Yang Kuan, Zhu Xiao-Dong. A diagnosis of gas-phase processes in a high pressure DC CH4/H2 plasma. Acta Physica Sinica, 2013, 62(16): 165204. doi: 10.7498/aps.62.165204
    [12] Liu Xiao-Liang, Sun Shao-Hua, Cao Yu, Sun Ming-Ze, Liu Qing-Cao, Hu Bi-Tao. Experimental study on the behaviors of femtosecond-laser-induced low-pressure N2 plasma. Acta Physica Sinica, 2013, 62(4): 045201. doi: 10.7498/aps.62.045201
    [13] Lan Yu-Dan, He Li-Ming, Ding Wei, Wang Feng. Evolution of H2/O2 mixture plasma under different initial temperatures. Acta Physica Sinica, 2010, 59(4): 2617-2621. doi: 10.7498/aps.59.2617
    [14] Li Huan. Renormalized perturbation expansion of asymmetric Anderson model. Acta Physica Sinica, 2010, 59(11): 8052-8062. doi: 10.7498/aps.59.8052
    [15] Zhang Hong-Wei, Chen Gai-Rong, Zhang Li-Wei, Lu Jing-Xiao, Wen Shu-Tang. A kinetic model for silicon film growth by silane/hydrogen glow discharge. Acta Physica Sinica, 2010, 59(7): 4901-4910. doi: 10.7498/aps.59.4901
    [16] Gao Fei, Mao Ming, Ding Zhen-Feng, Wang You-Nian. Langmuir probe measurement and theoretical studies on inductively coupled plasma in Ar-N2 discharge. Acta Physica Sinica, 2008, 57(8): 5123-5129. doi: 10.7498/aps.57.5123
    [17] Qi Jing, Jin Jing, Hu Hai-Long, Gao Ping-Qi, Yuan Bao-He, He De-Yan. Effect of H2 on polycrystalline Si films deposited by plasma-enhanced CVD using Ar-diluted SiH4. Acta Physica Sinica, 2006, 55(11): 5959-5963. doi: 10.7498/aps.55.5959
    [18] SHANG YE-CHUN, ZHANG YI-MEN, ZHANG YU-MING. MONTE CARLO SIMULATION OF ELECTRON TRANSPORT IN 6H-SiC. Acta Physica Sinica, 2000, 49(9): 1786-1791. doi: 10.7498/aps.49.1786
    [19] ZHANG YU-MING, ZHANG YI-MEN, CUI JIE, LUO JIN-SHENG. MONTE CARLO MODEL FOR ELECTRON TRANSPORT IN THE MATERIAL 3C-SiC. Acta Physica Sinica, 1997, 46(11): 2215-2222. doi: 10.7498/aps.46.2215
    [20] Zhang Guo-Min, Yang Chuan-Zhang. . Acta Physica Sinica, 1995, 44(6): 958-962. doi: 10.7498/aps.44.958
Metrics
  • Abstract views:  5586
  • PDF Downloads:  314
  • Cited By: 0
Publishing process
  • Received Date:  12 March 2014
  • Accepted Date:  07 May 2014
  • Published Online:  05 September 2014

/

返回文章
返回
Baidu
map