搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

固态核磁共振量子控制及其应用

赵立强 李宇晨 尹浩川 张晟昱 吴泽 彭新华

引用本文:
Citation:

固态核磁共振量子控制及其应用

赵立强, 李宇晨, 尹浩川, 张晟昱, 吴泽, 彭新华

Quantum control based on solid-state nuclear magnetic resonance and its applications

Zhao Liqiang, Li Yuchen, Yin Haochuan, Zhang Shengyu, Wu Ze, Peng Xinhua
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 作为一种物质表征的重要技术手段,固态核磁共振已经在物理学、材料科学、化学、生物学等多个学科领域得到了广泛的应用。近年来,得益于固态核磁共振体系中丰富的多体相互作用和多样的脉冲控制手段,该技术逐渐在前沿的量子科技中展现出重要的研究价值和应用潜力。本文系统性地介绍了固态核磁共振体系的研究对象和理论基础,包括该系统中重要的核自旋相互作用机理及其哈密顿量形式,列举了动力学解耦、魔角旋转等典型的固态核自旋动力学调控手段。此外,我们重点展示了近年来在固态核磁共振量子控制取得的前沿进展,包括核自旋极化增强技术、 弗洛凯哈密顿量的调控技术等。最后,我们结合一些重要的研究工作阐述了固态核磁共振量子控制技术在量子模拟领域中的应用。
    As an important technique for the characterization of materials, solid-state NMR has been widely used in many fields such as physics, materials science, chemistry and biology. In recent years, solid-state NMR has gradually shown important research value and application potential in cutting-edge quantum technologies due to the abundant many-body interactions and pulse control methods. In this paper, we systematically introduce the research objects and theoretical foundations of solid-state NMR, including important nuclear spin interaction mechanisms and their Hamiltonian forms. We also introduce typical dynamical control methods of solid-state nuclear spins, such as such as dynamical decoupling and magicangle spinning. Furthermore, we focus on recent advancements in the quantum control based on solid-state NMR, including nuclear spin polarization enhancement techniques and the control techniques of Floquet average Hamiltonians. Finally, by presenting some important research works, we discuss the applications of solid-state NMR quantum control technologies in the field of quantum simulation.
  • [1]

    Lloyd S 1993 Science 261 1569

    [2]

    DiVincenzo D P 1995 Physical Review A 51 1015

    [3]

    Cory D G, Fahmy A F, Havel T F 1997 Proceedings of the National Academy of Sciences 94 1634

    [4]

    Gershenfeld N A, Chuang I L 1997 science 275 350

    [5]

    Jones J A 2011 Progress in nuclear magnetic resonance spectroscopy 59 91

    [6]

    Vandersypen L M, Chuang I L 2004 Reviews of modern physics 76 1037

    [7]

    Khaneja N, Reiss T, Kehlet C, Schulte-Herbrüggen T, Glaser S J 2005 Journal of magnetic resonance 172 296

    [8]

    Haeberlen U 2012 High Resolution NMR in solids selective averaging: supplement 1 advances in magnetic resonance, vol. 1 (Elsevier)

    [9]

    Kane B E 1998 nature 393 133

    [10]

    Pham L M, DeVience S J, Casola F, Lovchinsky I, Sushkov A O, Bersin E, Lee J, Urbach E, Cappellaro P, Park H, et al. 2016 Physical Review B 93 045425

    [11]

    Gärttner M, Bohnet J G, Safavi-Naini A, Wall M L, Bollinger J J, Rey A M 2017 Nature Physics 13 781

    [12]

    Geier S, Thaicharoen N, Hainaut C, Franz T, Salzinger A, Tebben A, Grimshandl D, Zürn G, Weidemüller M 2021 Science 374 1149

    [13]

    Miller C, Carroll A N, Lin J, Hirzler H, Gao H, Zhou H, Lukin M D, Ye J 2024 Nature 633 332

    [14]

    Warren W S 1997 Science 277 1688

    [15]

    Cory D G, Laflamme R, Knill E, Viola L, Havel T F, Boulant N, Boutis G, Fortunato E, Lloyd S, Martinez R, et al. 2000 Fortschritte der Physik: Progress of Physics 48 875

    [16]

    李俊, 崔江煜, 杨晓东, 罗智煌, 潘健, 余琦, 李兆凯, 彭新华, 杜江峰, et al. 2015 64 140302

    [17]

    Krojanski H G, Suter D 2006 Physical review letters 97 150503

    [18]

    Cappellaro P, Emerson J, Boulant N, Ramanathan C, Lloyd S, Cory D G 2005 Physical review letters 94 020502

    [19]

    Álvarez G A, Suter D, Kaiser R 2015 Science 349 846

    [20]

    Wei K X, Ramanathan C, Cappellaro P 2018 Physical review letters 120 070501

    [21]

    Rovny J, Blum R L, Barrett S E 2018 Physical review letters 120 180603

    [22]

    Wei K X, Peng P, Shtanko O, Marvian I, Lloyd S, Ramanathan C, Cappellaro P 2019 Physical review letters 123 090605

    [23]

    Sánchez C M, Chattah A K, Wei K X, Buljubasich L, Cappellaro P, Pastawski H M 2020 Physical review letters 124 030601

    [24]

    Peng P, Yin C, Huang X, Ramanathan C, Cappellaro P 2021 Nature Physics 17 444

    [25]

    Peng P, Ye B, Yao N Y, Cappellaro P 2023 Nature Physics 19 1027

    [26]

    Stasiuk A, Cappellaro P 2023 Physical Review X 13 041016

    [27]

    Li Y, Zhou T G, Wu Z, Peng P, Zhang S, Fu R, Zhang R, Zheng W, Zhang P, Zhai H, et al. 2024 Nature Physics

    [28]

    Cappellaro P, Ramanathan C, Cory D G 2007 Physical review letters 99 250506

    [29]

    Álvarez G A, Suter D 2010 Physical Review Letters 104 230403

    [30]

    Ramanathan C, Cappellaro P, Viola L, Cory D G 2011 New Journal of Physics 13 103015

    [31]

    Kaur G, Cappellaro P 2012 New Journal of Physics 14 083005

    [32]

    Ernst M 2003 Journal of Magnetic Resonance 162 1

    [33]

    Souza A M, Álvarez G A, Suter D 2012 Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 370 4748

    [34]

    Medek A, Harwood J S, Frydman L 1995 Journal of the American Chemical Society 117 12779

    [35]

    Levitt M H, Grant D M, Harris R K 2007 Solid State NMR Studies of Biopolymers

    [36]

    Weingarth M, Demco D E, Bodenhausen G, Tekely P 2009 Chemical Physics Letters 469 342

    [37]

    Hartmann S, Hahn E 1962 Physical Review 128 2042

    [38]

    Li Y, Zhang S, Wu Z, Peng X, Fu R 2022 Magnetic Resonance Letters 2 147

    [39]

    Thankamony A S L, Wittmann J J, Kaushik M, Corzilius B 2017 Progress in nuclear magnetic resonance spectroscopy 102 120

    [40]

    Daley A J, Bloch I, Kokail C, Flannigan S, Pearson N, Troyer M, Zoller P 2022 Nature 607 667

    [41]

    Boixo S, Isakov S V, Smelyanskiy V N, Babbush R, Ding N, Jiang Z, Bremner M J, Martinis J M, Neven H 2018 Nature Physics 14 595

    [42]

    Dowling J P, Milburn G J 2003 Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 361 1655

    [43]

    Levitt M H 2008 Spin dynamics: basics of nuclear magnetic resonance (John Wiley & Sons)

    [44]

    Duer M J 2008 Solid state NMR spectroscopy: principles and applications (John Wiley & Sons)

    [45]

    Abragam A 1961 The Principles of Nuclear Magnetism (Oxford University Press)

    [46]

    王义遒 1964 1

    [47]

    蒲鹏, 徐灿, 解淑玉 2011 物理化学学报 27 2227

    [48]

    Resing H 1969 Molecular Crystals and Liquid Crystals 9 101

    [49]

    Krojanski H G, Suter D 2004 Physical review letters 93 090501

    [50]

    Krojanski H G, Suter D 2006 Physical Review AAtomic, Molecular, and Optical Physics 74 062319

    [51]

    Lovrić M, Krojanski H G, Suter D 2007 Physical Review AAtomic, Molecular, and Optical Physics 75 042305

    [52]

    Álvarez G A, Suter D 2011 Physical review letters 107 230501

    [53]

    Alvarez G A, Suter D 2011 Physical Review AAtomic, Molecular, and Optical Physics 84 012320

    [54]

    Álvarez G A, Kaiser R, Suter D 2013 Annalen der Physik 525 833

    [55]

    Sánchez C M, Chattah A K, Pastawski H M 2022 Physical Review A 105 052232

    [56]

    Zhou T, Swingle B 2023 Nature communications 14 3411

    [57]

    Zhang W, Cappellaro P, Antler N, Pepper B, Cory D G, Dobrovitski V V, Ramanathan C, Viola L 2009 Physical Review AAtomic, Molecular, and Optical Physics 80 052323

    [58]

    Rufeil-Fiori E, Sánchez C M, Oliva F Y, Pastawski H M, Levstein P R 2009 Physical Review A—Atomic, Molecular, and Optical Physics 79 032324

    [59]

    Peng P 2022 NMR studies of quantum thermalization. Ph.D. Dissertation, Massachusetts Institute of Technology

    [60]

    Cappellaro P, Viola L, Ramanathan C 2011 Physical Review A—Atomic, Molecular, and Optical Physics 83 032304

    [61]

    Maletinsky P, Kroner M, Imamoglu A 2009 Nature Physics 5 407

    [62]

    Auccaise R, Araujo-Ferreira A G, Sarthour R S, Oliveira I S, Bonagamba T J, Roditi I 2015 Phys. Rev. Lett. 114 043604

    [63]

    Greilich A, Kopteva N E, Kamenskii A N, Sokolov P S, Korenev V L, Bayer M 2024 Nature Physics 20 631

    [64]

    Redfield A G 1965 In Advances in Magnetic and Optical Resonance, vol. 1 (Elsevier), pp 1-32

    [65]

    Kowalewski J, Maler L 2017 Nuclear spin relaxation in liquids: theory, experiments, and applications (CRC press)

    [66]

    Gasbarri G, Ferialdi L 2018 Physical Review A 98 042111

    [67]

    Wang P, Chen C, Peng X, Wrachtrup J, Liu R B 2019 Physical Review Letters 123 050603

    [68]

    Wu Z, Wang P, Wang T, Li Y, Liu R, Chen Y, Peng X, Liu R B 2024 Physical Review Letters 132 200802

    [69]

    Meinel J, Vorobyov V, Wang P, Yavkin B, Pfender M, Sumiya H, Onoda S, Isoya J, Liu R B, Wrachtrup J 2022 Nature Communications 13 5318

    [70]

    Cheung B C H, Liu R B 2023 Advanced Quantum Technologies 2300286

    [71]

    Modi K, Cable H, Williamson M, Vedral V 2011 Physical Review X 1 021022

    [72]

    McArthur D, Hahn E, Walstedt R 1969 Physical Review 188 609

    [73]

    Demco D, Tegenfeldt J, Waugh J 1975 Physical Review B 11 4133

    [74]

    Mehring M 2012 Principles of high resolution NMR in solids (Springer Science & Business Media)

    [75]

    Kolodziejski W, Klinowski J 2002 Chemical Reviews 102 613

    [76]

    Slichter C, Holton W C 1961 Physical Review 122 1701

    [77]

    Anderson A, Hartmann S 1962 Physical Review 128 2023

    [78]

    Hediger S, Meier B, Kurur N D, Bodenhausen G, Ernst R 1994 Chemical Physics Letters 223 283

    [79]

    Hediger S, Meier B, Ernst R 1995 Chemical Physics Letters 240 449

    [80]

    Levitt M, Suter D, Ernst R 1986 The Journal of chemical physics 84 4243

    [81]

    Kim H, Cross T A, Fu R 2004 Journal of Magnetic Resonance 168 147

    [82]

    Barbara T M, Williams E H 1992 Journal of Magnetic Resonance (1969) 99 439

    [83]

    Hediger S, Meier B, Ernst R 1993 Chemical physics letters 213 627

    [84]

    Fu R, Pelupessy P, Bodenhausen G 1997 Chemical physics letters 264 63

    [85]

    Fu R, Hu J, Cross T A 2004 Journal of Magnetic Resonance 168 8

    [86]

    Overhauser A W 1953 Physical Review 92 411

    [87]

    Abraham M, McCausland M, Robinson F 1959 Physical Review Letters 2 449

    [88]

    Maly T, Debelouchina G T, Bajaj V S, Hu K N, Joo C G, Mak-Jurkauskas M L, Sirigiri J R, Van Der Wel P C, Herzfeld J, Temkin R J, et al. 2008 The Journal of chemical physics 128

    [89]

    Eickhoff M, Suter D 2004 Journal of Magnetic Resonance 166 69

    [90]

    Lai C, Maletinsky P, Badolato A, Imamoglu A 2006 Physical Review Letters 96 167403

    [91]

    Tateishi K, Negoro M, Nishida S, Kagawa A, Morita Y, Kitagawa M 2014 Proceedings of the National Academy of Sciences 111 7527

    [92]

    Gao X, Vaidya S, Li K, Ju P, Jiang B, Xu Z, Allcca A E L, Shen K, Taniguchi T, Watanabe K, et al. 2022 Nature Materials 21 1024

    [93]

    Millington-Hotze P, Dyte H E, Manna S, Covre da Silva S F, Rastelli A, Chekhovich E A 2024 Nature Communications 15 985

    [94]

    Hautzinger M P, Pan X, Hayden S C, Ye J Y, Jiang Q, Wilson M J, Phillips A J, Dong Y, Raulerson E K, Leahy I A, et al. 2024 Nature 1

    [95]

    Cui J, Li J, Liu X, Peng X, Fu R 2018 Journal of Magnetic Resonance 294 83

    [96]

    Haeberlen U, Waugh J S 1968 Physical Review 175 453

    [97]

    Mori T, Kuwahara T, Saito K 2016 Physical Review Letters 116 120401

    [98]

    Abanin D A, De Roeck W, Ho W W, Huveneers F 2017 Physical Review B 95 014112

    [99]

    Blanes S, Casas F, Oteo J A, Ros J 2009 Physics reports 470 151

    [100]

    Bukov M, D’Alessio L, Polkovnikov A 2015 Advances in Physics 64 139

    [101]

    Suter D, Liu S, Baum J, Pines A 1987 Chemical physics 114 103

    [102]

    Viola L, Knill E, Lloyd S 1999 Physical Review Letters 82 2417

    [103]

    Alvarez G A, Ajoy A, Peng X, Suter D 2010 Physical Review A—Atomic, Molecular, and Optical Physics 82 042306

    [104]

    Yang W, Wang Z Y, Liu R B 2011 Frontiers of Physics in China 6 2

    [105]

    Peng X, Suter D, Lidar D A 2011 Journal of Physics B: Atomic, Molecular and Optical Physics 44 154003

    [106]

    Hahn E L 1950 Physical review 80 580

    [107]

    Carr H Y, Purcell E M 1954 Physical review 94 630

    [108]

    Meiboom S, Gill D 1958 Review of scientific instruments 29 688

    [109]

    Khodjasteh K, Lidar D A 2005 Physical review letters 95 180501

    [110]

    Uhrig G S 2007 Physical Review Letters 98 100504

    [111]

    Rhim W K, Pines A, Waugh J S 1970 Physical Review Letters 25 218

    [112]

    Waugh J S, Huber L M, Haeberlen U 1968 Physical Review Letters 20 180

    [113]

    Cory D, Miller J, Garroway A 1990 Journal of Magnetic Resonance (1969) 90 205

    [114]

    Peng P, Huang X, Yin C, Joseph L, Ramanathan C, Cappellaro P 2022 Physical Review Applied 18 024033

    [115]

    Mehring M, Waugh J S 1972 Physical Review B 5 3459

    [116]

    Li J, Fan R, Wang H, Ye B, Zeng B, Zhai H, Peng X, Du J 2017 Physical Review X 7 031011

    [117]

    Schleier-Smith M 2017 Nature Physics 13 724

    [118]

    Landsman K A, Figgatt C, Schuster T, Linke N M, Yoshida B, Yao N Y, Monroe C 2019 Nature 567 61

    [119]

    潘健, 余琦, 彭新华 2017 66 33

    [120]

    孔祥宇, 朱垣晔, 闻经纬, 辛涛, 李可仁, 龙桂鲁 2018 67 1

    [121]

    薛飞, 杜江峰, 范扬眉, 石名俊, 周先意, 韩荣典, 吴季辉 2002 51 763

    [122]

    Suter D, Pearson J 1988 Chemical physics letters 144 328

    [123]

    van Beek J D, Carravetta M, Antonioli G C, Levitt M H 2005 The Journal of chemical physics 122

    [124]

    Aue W P, Bartholdi E, Ernst R R 1976 The Journal of Chemical Physics 64 2229

    [125]

    Wokaun A, Ernst R R 1977 Chemical Physics Letters 52 407

    [126]

    Drobny G, Pines A, Sinton S, Weitekamp D P, Wemmer D 1978 In Faraday Symposia of the Chemical Society, vol. 13 (Royal Society of Chemistry), pp 49-55

    [127]

    Bodenhausen G 1980 Progress in Nuclear Magnetic Resonance Spectroscopy 14 137

    [128]

    Yen Y S, Pines A 1983 The Journal of chemical physics 78 3579

    [129]

    Baum J, Munowitz M, Garroway A N, Pines A 1985 The Journal of chemical physics 83 2015

    [130]

    Abanin D A, Altman E, Bloch I, Serbyn M 2019 Reviews of Modern Physics 91 021001

    [131]

    Turner C J, Michailidis A A, Abanin D A, Serbyn M, Papić Z 2018 Nature Physics 14 745

  • [1] 成恩宏, 郎利君. 非互易Aubry-André 模型的经典电路模拟.  , doi: 10.7498/aps.71.20220219
    [2] 徐达, 王逸璞, 李铁夫, 游建强. 微波驱动下超导量子比特与磁振子的相干耦合.  , doi: 10.7498/aps.71.20220260
    [3] 高雪儿, 李代莉, 刘志航, 郑超. 非厄米系统的量子模拟新进展.  , doi: 10.7498/aps.71.20221825
    [4] 王晨旭, 贺冉, 李睿睿, 陈炎, 房鼎, 崔金明, 黄运锋, 李传锋, 郭光灿. 量子计算与量子模拟中离子阱结构研究进展.  , doi: 10.7498/aps.71.20220224
    [5] 陈阳, 张天炀, 郭光灿, 任希锋. 基于集成光芯片的量子模拟研究进展.  , doi: 10.7498/aps.71.20221938
    [6] 罗雨晨, 李晓鹏. 相互作用费米子的量子模拟.  , doi: 10.7498/aps.71.20221756
    [7] 李廷伟, 荣星, 杜江峰. 固态单自旋量子控制研究进展.  , doi: 10.7498/aps.71.20211808
    [8] 林键, 叶梦, 朱家纬, 李晓鹏. 机器学习辅助绝热量子算法设计.  , doi: 10.7498/aps.70.20210831
    [9] 鹿博, 王大军. 超冷极性分子.  , doi: 10.7498/aps.68.20182274
    [10] 赵兴东, 张莹莹, 刘伍明. 光晶格中超冷原子系统的磁激发.  , doi: 10.7498/aps.68.20190153
    [11] 朱燕清, 张丹伟, 朱诗亮. 用光晶格模拟狄拉克、外尔和麦克斯韦方程.  , doi: 10.7498/aps.68.20181929
    [12] 赵士平, 刘玉玺, 郑东宁. 新型超导量子比特及量子物理问题的研究.  , doi: 10.7498/aps.67.20180845
    [13] 喻祥敏, 谭新生, 于海峰, 于扬. 利用超导量子电路模拟拓扑量子材料.  , doi: 10.7498/aps.67.20181857
    [14] 范桁. 量子计算与量子模拟.  , doi: 10.7498/aps.67.20180710
    [15] 孔祥宇, 朱垣晔, 闻经纬, 辛涛, 李可仁, 龙桂鲁. 核磁共振量子信息处理研究的新进展.  , doi: 10.7498/aps.67.20180754
    [16] 潘健, 余琦, 彭新华. 多量子比特核磁共振体系的实验操控技术.  , doi: 10.7498/aps.66.150302
    [17] 李俊, 崔江煜, 杨晓东, 罗智煌, 潘健, 余琦, 李兆凯, 彭新华, 杜江峰. 核磁共振中的量子控制.  , doi: 10.7498/aps.64.167601
    [18] 姚淅伟, 曾碧榕, 刘钦, 牟晓阳, 林星程, 杨春, 潘健, 陈忠. 基于核磁共振的子空间量子过程重构.  , doi: 10.7498/aps.59.6837
    [19] 任韧, 徐进, 任大男. 半导体核磁共振显微压力的质子全自旋量子门的实现.  , doi: 10.7498/aps.59.8155
    [20] 李永放, 任立庆, 马瑞琼, 樊荣, 刘娟. 利用相位可控光场实现量子态波函数时域演化的量子控制.  , doi: 10.7498/aps.59.1671
计量
  • 文章访问数:  55
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 上网日期:  2025-03-12

/

返回文章
返回
Baidu
map