Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Quantum criticalities in carrier-doped iron-based superconductors

Li Zheng Zhou Rui Zheng Guo-Qing

Citation:

Quantum criticalities in carrier-doped iron-based superconductors

Li Zheng, Zhou Rui, Zheng Guo-Qing
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In the past several decades, quantum phase transition and the associated fluctuations have emerged as a major challenge to our understanding of condensed matter. Such transition is tuned by an external parameter such as pressure, chemical doping or magnetic field. The transition point, called quantum critical point (QCP), is only present at absolute zero temperature (T), but its influence (quantum criticality), is spread to nonzero temperature region. Quite often, new stable orders of matter, such as superconductivity, emerge around the QCP, whose relationship with the quantum fluctuations is one of the most important issues. Iron-pnictide superconductors are the second class of high-temperature superconductor family whose phase diagram is very similar to the first class, the copper-oxides. Superconductivity emerges in the vicinity of exotic orders, such as antiferromagnetic, structural or nematic order. Therefore, iron-pnictides provide us a very good opportunity to study quantum criticality. Here we review nuclear magnetic resonance (NMR) study on the coexistence of states and quantum critical phenomena in both hole-doped system Ba1-xKxFe2As2 as well as electron-doped systems BaFe2-xNixAs2 and LaFeAsO1-xFx. Firstly, we found that the 75As NMR spectra split or are broadened for H//c-axis, and shift to a higher frequency for H//ab-plane below a certain temperature in the underdoped region of both hole-doped Ba1-xKxFe2As2 and electron-doped BaFe2-xNixAs2, which indicate that an internal magnetic field develops along the c-axis due to an antiferromagnetic order. Upon further cooling, the spin-lattice relaxation rate 1/T1 measured at the shifted peak shows a distinct decrease below the superconducting critical temperature Tc. These results show unambiguously that the antiferromagnetic order and superconductivity coexist microscopically, which is the essential condition of magnetic QCP. Moreover, the much weaker T-dependence of 1/T1 in the superconducting state compared with the optimal doping sample suggests that the coexisting region is an unusual state and deserves further investigation. Secondly, we conducted transport measurements in electron-doped BaFe2-xNixAs2 system, and found a T-linear resistivity at two critical points. One is at the optimal doping xc1 = 0.10, while the other is in the overdoped region xc2 = 0.14. We found that 1/T1 is nearly T-independent above Tc at xc1 where TN =0, which indicates that xc1 is a magnetic QCP and the observed T-linear resistivity is due to the quantum fluctuation. We find that 1/T1 close to the optimal doping in both Ba1-xKxFe2As2 and LaFeAsO1-xFx also shows a similar behavior as in BaFe2-xNixAs2. The results suggest that superconductivity in these compounds is strongly tied to the quantum antiferromagnetic spin fluctuation. We further studied the structural transition in BaFe2-xNixAs2 by NMR. Since the a-axis and b-axis are not identical below the nematic structural transition temperature Ts, the electric field-gradient becomes asymmetric. Therefore the NMR satellite peaks associated with nuclear spin I=3/2 of 75As split for a twinned single crystal, when the external magnetic field is applied along a- or b-axis. We were able to track the nematic structural transition up to x=0.12. The Ts extrapolates to zero at x=0.14 which suggests that xc2 is a QCP associated with a nematic structural phase transition and the T-linear resistivity at xc2 is therefore due to the QCP. No existing theories can explain such behavior of the resistivity and we call for theoretical investigations in this regard.
      Corresponding author: Zheng Guo-Qing, gqzheng@iphy.ac.cn
    • Funds: Project supported by the CAS Strategic Priority Research Program, China (Grant No. XDB07020200), the State Key Development Program for Basic Research of China (Grant Nos. 2012CB821402, 2015CB921304), and the National Natural Science Foundation of China (Grant No. 11104336).
    [1]

    Cooper R A, Wang Y, Vignolle B, Lipscombe O J, Hayden S M, Tanabe Y, Adachi T, Koike Y, Nohara M, Takagi H, Proust C, Hussey N E 2009 Science 323 603

    [2]

    Mathur N D, Grosche F M, Julian S R, Walker I R, Freye D M, Haselwimmer R K W, Lonzarich G G 1998 Nature 394 39

    [3]

    Gegenwart P, Si Q, Steglich F 2008 Nat. Phys. 4 186

    [4]

    Coleman P, Schofield A J 2005 Nature 433 226

    [5]

    Sachdev S, Keimer B 2011 Phys. Today 64 29

    [6]

    Kamihara Y, Watanabe T, Hirano M, Hosono H 2008 J. Am. Chem. Soc. 130 3296

    [7]

    Ren Z A, Lu W, Yang J, Yi W, Shen X L, Li Z C, Che G C, Dong X L, Sun L L, Zhou F, Zhao Z X 2008 Chin. Phys. Lett. 25 2215

    [8]

    Fernandes R, Schmalian J 2010 Phys. Rev. B 82 014521

    [9]

    Hertz J A 1976 Phys. Rev. B 14 1165

    [10]

    Chakravarty S, Halperin B I, Nelson D R 1989 Phys. Rev. B 39 2344

    [11]

    Moriya T 1991 J. Mag. Mag. Mat. 100 261

    [12]

    Xu C, Mller M, Sachdev S 2008 Phys. Rev. B 78 020501

    [13]

    Chubukov A V, Hirschfeld P J 2015 Phys. Today 68 46

    [14]

    Rotter M, Pangerl M, Tegel M, Johrendt D 2008 Angew. Chem. Int. Ed. 47 7949

    [15]

    Li L J, Luo Y K, Wang Q B, Chen H, Ren Z, Tao Q, Li Y K, Lin X, He M, Zhu Z W, Cao G H, Xu Z A 2009 New. J. Phys. 11 025008

    [16]

    Julien M H, Mayaffre H, Horvatic M, Berthier C, Zhang X D, Wu W, Chen G F, Wang N L, Luo J L 2009 Europhys. Lett. 87 37001

    [17]

    Park J T, Inosov D S, Niedermayer C, Sun G L, Haug D, Christensen N B, Dinnebier R, Boris A V, Drew A J, Schulz L, Shapoval T, Wolff U, Neu V, Yang X, Lin C T, Keimer B, Hinkov V 2009 Phys. Rev. Lett. 102 117006

    [18]

    Baek S H, Lee H, Brown S E, Curro N J, Bauer E D, Ronning F, Park T, Thompson J D 2009 Phys. Rev. Lett. 102 227601

    [19]

    Urbano R R, Green E L, Moulton W G, Reyes A P, Kuhns P L, Bittar E M, Adriano C, Garitezi T M, Bufaiçal L, Pagliuso P G 2010 Phys. Rev. Lett. 105 107001

    [20]

    Wiesenmayer E, Luetkens H, Pascua G, Khasanov R, Amato A, Potts H, Banusch B, Klauss H H, Johrendt D 2011 Phys. Rev. Lett. 107 237001

    [21]

    Avci S, Chmaissem O, Goremychkin E A, Rosenkranz S, Castellan J P, Chung D Y, Todorov I S, Schlueter J A, Claus H, Kanatzidis M G, Daoud-Aladine A, Khalyavin D, Osborn R 2011 Phys. Rev. B 83 172503

    [22]

    Laplace Y, Bobroff J, Rullier-Albenque F, Colson D, Forget A 2009 Phys. Rev. B 80 140501

    [23]

    Sanna S, De Renzi R, Lamura G, Ferdeghini C, Palenzona A, Putti M, Tropeano M, Shiroka T 2009 Phys. Rev. B 80 052503

    [24]

    Sun G L, Sun D L, Konuma M, Popovich P, Boris A, Peng J B, Choi K Y, Lemmens P, Lin C T 2011 J. Supercond. Nov. Magn. 24 1773

    [25]

    Li Z, Zhou R, Liu Y, Sun D L, Yang J, Lin C T, Zheng G Q 2012 Phys. Rev. B 86 180501

    [26]

    Shen B, Yang H, Wang Z S, Han F, Zeng B, Shan L, Ren C, Wen H H 2011 Phys. Rev. B 84 184512

    [27]

    Li Z, Sun D L, Lin C T, Su Y H, Hu J P, Zheng G Q 2011 Phys. Rev. B 83 140506

    [28]

    Huang Q, Qiu Y, Bao W, Green M A, Lynn J W, Gasparovic Y C, Wu T, Wu G, Chen X H 2008 Phys. Rev. Lett. 101 257003

    [29]

    Kitagawa K, Katayama N, Ohgushi K, Yoshida M, Takigawa M 2008 J. Phys. Soc. Jpn. 77 114709

    [30]

    Kawasaki S, Mito T, Kawasaki Y, Zheng G Q, Kitaoka Y, Aoki D, Haga Y, Onuki Y 2003 Phys. Rev. Lett. 91 137001

    [31]

    Ma F J, Lu Z Y, Xiang T 2010 Front. Phys. China 5 150

    [32]

    Zhou R, Li Z, Yang J, Sun D L, Lin C T, Zheng G Q 2013 Nat. Commun. 4 2265

    [33]

    Fuseya Y, Kohno H, Miyake K 2003 J. Phys. Soc. Jpn. 72 2914

    [34]

    Maiti S, Fernandes R M, Chubukov A V 2012 Phys. Rev. B 85 144527

    [35]

    Ning F L, Ahilan K, Imai T, Sefat A S, McGuire M A, Sales B C, Mandrus D, Cheng P, Shen B, Wen H H 2010 Phys. Rev. Lett. 104 037001

    [36]

    Dai Y M, Xu B, Shen B, Xiao H, Wen H H, Qiu X G, Homes C C, Lobo R P S M 2013 Phys. Rev. Lett. 111 117001

    [37]

    Nakai Y, Iye T, Kitagawa S, Ishida K, Ikeda H, Kasahara S, Shishido H, Shibauchi T, Matsuda Y, Terashima T 2010 Phys. Rev. Lett. 105 107003

    [38]

    Hashimoto K, Cho K, Shibauchi T, Kasahara S, Mizukami Y, Katsumata R, Tsuruhara Y, Terashima T, Ikeda H, Tanatar M A, Kitano H, Salovich N, Giannetta R W, Walmsley P, Carrington A, Prozorov R, Matsuda Y 2012 Science 336 1554

    [39]

    Luetkens H, Klauss H H, Kraken M, Litterst F J, Dellmann T, Klingeler R, Hess C, Khasanov R, Amato A, Baines C, Kosmala M, Schumann O J, Braden M, Hamann-Borrero J, Leps N, Kondrat A, Behr G, Werner J, Buchner B 2009 Nat. Mater. 8 305

    [40]

    Oka T, Li Z, Kawasaki S, Chen G F, Wang N L, Zheng G Q 2012 Phys. Rev. Lett. 108 047001

    [41]

    Mazin I I, Singh D J, Johannes M D, Du M H 2008 Phys. Rev. Lett. 101 057003

    [42]

    Kuroki K, Onari S, Arita R, Usui H, Tanaka Y, Kontani H, Aoki H 2008 Phys. Rev. Lett. 101 087004

    [43]

    Graser S, Maier T A, Hirschfeld P J, Scalapino D J 2009 New. J. Phys. 11 025016

    [44]

    Kontani H, Onari S 2010 Phys. Rev. Lett. 104 157001

  • [1]

    Cooper R A, Wang Y, Vignolle B, Lipscombe O J, Hayden S M, Tanabe Y, Adachi T, Koike Y, Nohara M, Takagi H, Proust C, Hussey N E 2009 Science 323 603

    [2]

    Mathur N D, Grosche F M, Julian S R, Walker I R, Freye D M, Haselwimmer R K W, Lonzarich G G 1998 Nature 394 39

    [3]

    Gegenwart P, Si Q, Steglich F 2008 Nat. Phys. 4 186

    [4]

    Coleman P, Schofield A J 2005 Nature 433 226

    [5]

    Sachdev S, Keimer B 2011 Phys. Today 64 29

    [6]

    Kamihara Y, Watanabe T, Hirano M, Hosono H 2008 J. Am. Chem. Soc. 130 3296

    [7]

    Ren Z A, Lu W, Yang J, Yi W, Shen X L, Li Z C, Che G C, Dong X L, Sun L L, Zhou F, Zhao Z X 2008 Chin. Phys. Lett. 25 2215

    [8]

    Fernandes R, Schmalian J 2010 Phys. Rev. B 82 014521

    [9]

    Hertz J A 1976 Phys. Rev. B 14 1165

    [10]

    Chakravarty S, Halperin B I, Nelson D R 1989 Phys. Rev. B 39 2344

    [11]

    Moriya T 1991 J. Mag. Mag. Mat. 100 261

    [12]

    Xu C, Mller M, Sachdev S 2008 Phys. Rev. B 78 020501

    [13]

    Chubukov A V, Hirschfeld P J 2015 Phys. Today 68 46

    [14]

    Rotter M, Pangerl M, Tegel M, Johrendt D 2008 Angew. Chem. Int. Ed. 47 7949

    [15]

    Li L J, Luo Y K, Wang Q B, Chen H, Ren Z, Tao Q, Li Y K, Lin X, He M, Zhu Z W, Cao G H, Xu Z A 2009 New. J. Phys. 11 025008

    [16]

    Julien M H, Mayaffre H, Horvatic M, Berthier C, Zhang X D, Wu W, Chen G F, Wang N L, Luo J L 2009 Europhys. Lett. 87 37001

    [17]

    Park J T, Inosov D S, Niedermayer C, Sun G L, Haug D, Christensen N B, Dinnebier R, Boris A V, Drew A J, Schulz L, Shapoval T, Wolff U, Neu V, Yang X, Lin C T, Keimer B, Hinkov V 2009 Phys. Rev. Lett. 102 117006

    [18]

    Baek S H, Lee H, Brown S E, Curro N J, Bauer E D, Ronning F, Park T, Thompson J D 2009 Phys. Rev. Lett. 102 227601

    [19]

    Urbano R R, Green E L, Moulton W G, Reyes A P, Kuhns P L, Bittar E M, Adriano C, Garitezi T M, Bufaiçal L, Pagliuso P G 2010 Phys. Rev. Lett. 105 107001

    [20]

    Wiesenmayer E, Luetkens H, Pascua G, Khasanov R, Amato A, Potts H, Banusch B, Klauss H H, Johrendt D 2011 Phys. Rev. Lett. 107 237001

    [21]

    Avci S, Chmaissem O, Goremychkin E A, Rosenkranz S, Castellan J P, Chung D Y, Todorov I S, Schlueter J A, Claus H, Kanatzidis M G, Daoud-Aladine A, Khalyavin D, Osborn R 2011 Phys. Rev. B 83 172503

    [22]

    Laplace Y, Bobroff J, Rullier-Albenque F, Colson D, Forget A 2009 Phys. Rev. B 80 140501

    [23]

    Sanna S, De Renzi R, Lamura G, Ferdeghini C, Palenzona A, Putti M, Tropeano M, Shiroka T 2009 Phys. Rev. B 80 052503

    [24]

    Sun G L, Sun D L, Konuma M, Popovich P, Boris A, Peng J B, Choi K Y, Lemmens P, Lin C T 2011 J. Supercond. Nov. Magn. 24 1773

    [25]

    Li Z, Zhou R, Liu Y, Sun D L, Yang J, Lin C T, Zheng G Q 2012 Phys. Rev. B 86 180501

    [26]

    Shen B, Yang H, Wang Z S, Han F, Zeng B, Shan L, Ren C, Wen H H 2011 Phys. Rev. B 84 184512

    [27]

    Li Z, Sun D L, Lin C T, Su Y H, Hu J P, Zheng G Q 2011 Phys. Rev. B 83 140506

    [28]

    Huang Q, Qiu Y, Bao W, Green M A, Lynn J W, Gasparovic Y C, Wu T, Wu G, Chen X H 2008 Phys. Rev. Lett. 101 257003

    [29]

    Kitagawa K, Katayama N, Ohgushi K, Yoshida M, Takigawa M 2008 J. Phys. Soc. Jpn. 77 114709

    [30]

    Kawasaki S, Mito T, Kawasaki Y, Zheng G Q, Kitaoka Y, Aoki D, Haga Y, Onuki Y 2003 Phys. Rev. Lett. 91 137001

    [31]

    Ma F J, Lu Z Y, Xiang T 2010 Front. Phys. China 5 150

    [32]

    Zhou R, Li Z, Yang J, Sun D L, Lin C T, Zheng G Q 2013 Nat. Commun. 4 2265

    [33]

    Fuseya Y, Kohno H, Miyake K 2003 J. Phys. Soc. Jpn. 72 2914

    [34]

    Maiti S, Fernandes R M, Chubukov A V 2012 Phys. Rev. B 85 144527

    [35]

    Ning F L, Ahilan K, Imai T, Sefat A S, McGuire M A, Sales B C, Mandrus D, Cheng P, Shen B, Wen H H 2010 Phys. Rev. Lett. 104 037001

    [36]

    Dai Y M, Xu B, Shen B, Xiao H, Wen H H, Qiu X G, Homes C C, Lobo R P S M 2013 Phys. Rev. Lett. 111 117001

    [37]

    Nakai Y, Iye T, Kitagawa S, Ishida K, Ikeda H, Kasahara S, Shishido H, Shibauchi T, Matsuda Y, Terashima T 2010 Phys. Rev. Lett. 105 107003

    [38]

    Hashimoto K, Cho K, Shibauchi T, Kasahara S, Mizukami Y, Katsumata R, Tsuruhara Y, Terashima T, Ikeda H, Tanatar M A, Kitano H, Salovich N, Giannetta R W, Walmsley P, Carrington A, Prozorov R, Matsuda Y 2012 Science 336 1554

    [39]

    Luetkens H, Klauss H H, Kraken M, Litterst F J, Dellmann T, Klingeler R, Hess C, Khasanov R, Amato A, Baines C, Kosmala M, Schumann O J, Braden M, Hamann-Borrero J, Leps N, Kondrat A, Behr G, Werner J, Buchner B 2009 Nat. Mater. 8 305

    [40]

    Oka T, Li Z, Kawasaki S, Chen G F, Wang N L, Zheng G Q 2012 Phys. Rev. Lett. 108 047001

    [41]

    Mazin I I, Singh D J, Johannes M D, Du M H 2008 Phys. Rev. Lett. 101 057003

    [42]

    Kuroki K, Onari S, Arita R, Usui H, Tanaka Y, Kontani H, Aoki H 2008 Phys. Rev. Lett. 101 087004

    [43]

    Graser S, Maier T A, Hirschfeld P J, Scalapino D J 2009 New. J. Phys. 11 025016

    [44]

    Kontani H, Onari S 2010 Phys. Rev. Lett. 104 157001

  • [1] Li Miao-Cong, Tao Qian, Xu Zhu-An. The transport properties of iron-based superconductors. Acta Physica Sinica, 2021, 70(1): 017404. doi: 10.7498/aps.70.20201836
    [2] Tian Yu, Lin Zi-Dong, Wang Xiang-Yu, Che Liang-Yu, Lu Da-Wei. Experimental progress of quantum machine learning based on spin systems. Acta Physica Sinica, 2021, 70(14): 140305. doi: 10.7498/aps.70.20210684
    [3] Guo Jing, Wu Qi, Sun Li-Ling. Pressure-induced phenomena and physics in iron-based superconductors. Acta Physica Sinica, 2018, 67(20): 207409. doi: 10.7498/aps.67.20181651
    [4] Hao Ning, Hu Jiang-Ping. Research progress of topological quantum states in iron-based superconductor. Acta Physica Sinica, 2018, 67(20): 207101. doi: 10.7498/aps.67.20181455
    [5] Li Shi-Liang, Liu Zhao-Yu, Gu Yan-Hong. Nematic fluctuations in iron-based superconductors studied by resistivity change under uniaxial pressure. Acta Physica Sinica, 2018, 67(12): 127401. doi: 10.7498/aps.67.20180627
    [6] Kong Xiang-Yu, Zhu Yuan-Ye, Wen Jing-Wei, Xin Tao, Li Ke-Ren, Long Gui-Lu. New research progress of nuclear magnetic resonance quantum information processing. Acta Physica Sinica, 2018, 67(22): 220301. doi: 10.7498/aps.67.20180754
    [7] Gong Dong-Liang, Luo Hui-Qian. Antiferromagnetic order and spin dynamics in iron-based superconductors. Acta Physica Sinica, 2018, 67(20): 207407. doi: 10.7498/aps.67.20181543
    [8] Pan Jian, Yu Qi, Peng Xin-Hua. Experimental technique for multi-qubit nuclear magnetic resonance system. Acta Physica Sinica, 2017, 66(15): 150302. doi: 10.7498/aps.66.150302
    [9] Wu Liang, Chen Fang, Huang Chong-Yang, Ding Guo-Hui, Ding Yi-Ming. Multi-exponential inversion of T2 spectrum in NMR based on improved nonlinear fitting. Acta Physica Sinica, 2016, 65(10): 107601. doi: 10.7498/aps.65.107601
    [10] Tian Bao-Feng, Zhou Yuan-Yuan, Wang Yue, Li Zhen-Yu, Yi Xiao-Feng. Noise cancellation method for full-wave magnetic resonance sounding signal based on independent component analysis. Acta Physica Sinica, 2015, 64(22): 229301. doi: 10.7498/aps.64.229301
    [11] Yu Rong. Electron correlations and orbital selectivities in multiorbital models for iron-based superconductors. Acta Physica Sinica, 2015, 64(21): 217102. doi: 10.7498/aps.64.217102
    [12] Li Shi-Chao, Gan Yuan, Wang Jing-Hui, Ran Ke-Jing, Wen Jin-Sheng. Magnetic neutron scattering studies on the Fe-based superconductor system Fe1+yTe1-xSex. Acta Physica Sinica, 2015, 64(9): 097503. doi: 10.7498/aps.64.097503
    [13] Chen Kun, Deng You-Jin. Higgs mode near superfluid-to-Mott-insulatortransition studied by the quantum Monte Carlo method. Acta Physica Sinica, 2015, 64(18): 180201. doi: 10.7498/aps.64.180201
    [14] Zhao Jing-Long, Dong Zheng-Chao, Zhong Chong-Gui, Li Cheng-Di. Tunneling spectra for quantum wire/iron-based superconductor junction. Acta Physica Sinica, 2015, 64(5): 057401. doi: 10.7498/aps.64.057401
    [15] Li Jun, Cui Jiang-Yu, Yang Xiao-Dong, Luo Zhi-Huang, Pan Jian, Yu Qi, Li Zhao-Kai, Peng Xin-Hua, Du Jiang-Feng. Quantum control of nuclear magnetic resonance spin systems. Acta Physica Sinica, 2015, 64(16): 167601. doi: 10.7498/aps.64.167601
    [16] Li Xin, Xiao Li-Zhi, Liu Hua-Bing, Zhang Zong-Fu, Guo Bao-Xin, Yu Hui-Jun, Zong Fang-Rong. Optimization of nuclear magnetic resonance refocusing pulses to enhance signal intensity in gradient B0 field. Acta Physica Sinica, 2013, 62(14): 147602. doi: 10.7498/aps.62.147602
    [17] Yao Xi-Wei, Zeng Bi-Rong, Liu Qin, Mu Xiao-Yang, Lin Xing-Cheng, Yang Chun, Pan Jian, Chen Zhong. Subspace quantum process tomography via nuclear magnetic resonance. Acta Physica Sinica, 2010, 59(10): 6837-6841. doi: 10.7498/aps.59.6837
    [18] Li Shao, Ren Yu-Feng, Wang Ning, Tian Ye, Chu Hai-Feng, Li Song-Lin, Chen Ying-Fei, Li Jie, Chen Geng-Hua, Zheng Dong-Ning. Detection of nuclear magnetic resonance in the microtesla range using a high Tc dc-superconducting quantum interference device. Acta Physica Sinica, 2009, 58(8): 5744-5749. doi: 10.7498/aps.58.5744
    [19] Pan Ke-Jia, Chen Hua, Tan Yong-Ji. Multi-exponential inversion of T2 spectrum in NMR based on differential evolution algorithm. Acta Physica Sinica, 2008, 57(9): 5956-5961. doi: 10.7498/aps.57.5956
    [20] Wang He, Li Geng-Ying. Combination of inversion and fitting as an effective method for the analysis of NMR relaxation data. Acta Physica Sinica, 2005, 54(3): 1431-1436. doi: 10.7498/aps.54.1431
Metrics
  • Abstract views:  6885
  • PDF Downloads:  500
  • Cited By: 0
Publishing process
  • Received Date:  06 September 2015
  • Accepted Date:  14 October 2015
  • Published Online:  05 November 2015

/

返回文章
返回
Baidu
map