搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于独立成分分析的全波核磁共振信号噪声滤除方法研究

田宝凤 周媛媛 王悦 李振宇 易晓峰

引用本文:
Citation:

基于独立成分分析的全波核磁共振信号噪声滤除方法研究

田宝凤, 周媛媛, 王悦, 李振宇, 易晓峰

Noise cancellation method for full-wave magnetic resonance sounding signal based on independent component analysis

Tian Bao-Feng, Zhou Yuan-Yuan, Wang Yue, Li Zhen-Yu, Yi Xiao-Feng
PDF
导出引用
  • 核磁共振测深(MRS)探水仪探测到的纳伏级微弱信号极易受到各种环境噪声的干扰, 严重影响信号特征参数的准确提取, 导致后续反演解释错误率增高. 针对这一难题, 提出了基于独立成分分析的快速固定点算法进行信噪分离. 首先分析了该算法用于全波MRS信号消噪的适用性; 其次, 采用数字正交法解决欠定盲源分离问题, 提出了频谱校正法实现分离信号幅值的有效恢复. 仿真结果表明, 该算法能够有效地实现全波MRS信号的信噪分离, 且数据拟合后初始振幅和弛豫时间的相对误差小于 5.00%; 通过与其他经典算法的对比分析, 进一步证明了该算法消噪性能的优越性. 将该算法应用到野外实测信号处理, 结果证明其能有效滤除环境噪声.
    Signal collected from magnetic resonance sounding (MRS) instrument is only a few tens of nano-volt and susceptible to environmental noise, leading to a low signal-to-noise ratio. In addition, the accuracy of characteristic parameter extraction from MRS signal is seriously affected, and the resulting error of the subsequent inversion interpretation increases. In this paper, a fast fixed-point algorithm for independent component analysis (FastICA) is utilized to enhance the performance in the high noisy environment. First, the applicability of FastICA algorithm to noise cancellation of MRS signal is analyzed. Whether the mixed signal can be separated completely depends on the appropriate choice of nonlinear function in FastICA algorithm, moreover, the choice of nonlinear function is closely related to the Gaussian type of signal. Thus, in this process, the kurtoses of noise and full-wave MRS signal are calculated, and then the Gaussian type of signal is determined. Therefore based on the Gaussian type of signal, we can choose the corresponding nonlinear function applied to the FastICA algorithm in order to realize the effective separation of the mixed signals. Secondly, undetermined blind source separation is one of common problems of ICA. To cope with this tough situation, a digital orthogonal method is adopted to construct some extra observed signals combined with the existing observed one as the input signal of this algorithm. Hence, the digital orthogonal method can satisfy the application condition of ICA, i.e., the number of observed signal must be greater than or equal to that of source signal. This means that it is able to remove the application limitation of ICA when there is only one observed signal. Owing to the problem of variable amplitude of separated signals after ICA, it is crucial to recover the initial amplitude of the separated MRS signal, because it represents the amount of water content in the aquifer. Aiming at this problem, a spectrum correcting method is proposed. In frequency domain, the spectrum of separated MRS signal is restored into the original value that is the spectrum of observed signal at Larmor frequency, then transformed into time domain by inversing fast Fourier transform to obtain the desired MRS signal. In the validation of the proposed algorithm, two tests are considered: simulation and field data processing. In the simulation case, the observed signal constructed by full-wave MRS signal and two power-line harmonics with different frequencies is the main processing object, and the proposed algorithm is utilized to realize the observed signal separated into ideal MRS signal and noise effectively. To verify the applicability of this proposed algorithm further, under the condition of different initial amplitudes and relaxation times, the characteristic parameters of separated MRS signal are extracted by this proposed algorithm and the corresponding relative fitting error is determined. The simulation results show that adopting this algorithm can effectively realize the separation of the noisy full-wave MRS signal. In addition, the relative errors of initial amplitude and relaxation time after data fitting are both within 5.00%. When compared with the denoising ability of some other classical algorithms, the performance of this proposed algorithm is superior. Finally, this algorithm is applied to the processing of the field data. The results indicate that power-line harmonics and other single-frequency interference contained in the MRS signal can be removed effectively.
      通信作者: 易晓峰, yixiaofeng@jlu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 41204079)资助的课题.
      Corresponding author: Yi Xiao-Feng, yixiaofeng@jlu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 41204079).
    [1]

    Schirov M, Legchenko A, Greer G 1991 Explor. Geophys. 22 333

    [2]

    Legchenko A, Baltassat J M, Beauce A, Bernard J 2002 J. Appl. Geophys. 50 21

    [3]

    Lubczynski M, Roy J 2003 J. Hydrol. 283 19

    [4]

    Yaramanci U, Legchenko A, Roy J 2008 J. Appl. Geophys. 66 71

    [5]

    Hao H C 2013 M. S. Dissertation (Changchun: Jilin University) (in Chinese) [郝荟萃 2013 硕士学位论文 (长春: 吉林大学)]

    [6]

    Lin T T, Hui F, Jiang C D, Lin J 2013 Chinese J. Geophys. 56 2849 (in Chinese) [林婷婷, 慧芳, 蒋川东, 林君 2013 地球 56 2849]

    [7]

    Juan P, Felix R 2002 J. Appl. Geophys. 50 83

    [8]

    Chalikakis K, Nielsen M R, Legchenko A 2008 J. Appl. Geophys. 66 176

    [9]

    Legchenko A, Valla P 2002 J. Appl. Geophys. 50 3

    [10]

    Legchenko A 2007 Boletn Geolgicoy Minero 118 489

    [11]

    Legchenko A, Valla P 2003 J. Appl. Geophys. 53 103

    [12]

    Strehl S, Rommel I, Hertrich M, Yaramanci U 2006 Proceedings of the 3rd Magnetic Resonance Sounding International Workshop Madrid, Spain, October 25-27, 2006 p65

    [13]

    Strehl S 2006 M. S. Dissertation (Berlin: Technical University of Berlin)

    [14]

    Dalgaard E, Auken E, Larsen J J 2012 Geophys. J. Int. 191 88

    [15]

    Mller-Petke M, Costabel S 2014 Near Surf. Geophys. 12 199

    [16]

    Walsh D O 2008 J. Appl. Geophys. 66 140

    [17]

    Walsh D O 2008 US Patent 7 466 128 B2

    [18]

    Jiang C D, Wang Z X, Lin J, Sun S Q, Tian B F, Duan Q M, Rong L L 2009 The 4nd International Workshop on the Magnetic Resonance Sounding Method Applied to Non-invasive Groundwater Investigations Proceedings Grenoble, France, October 20-23, 2009 p101

    [19]

    Jiang C D, Lin J, Duan Q M, Sun S Q, Tian B F 2011 Near Surf. Geophys. 9 459

    [20]

    Tian B F, Lin J, Duan Q M, Jiang C D 2012 Chinese J. Geophys. 55 2462 (in Chinese) [田宝凤, 林君, 段清明, 蒋川东 2012 地球 55 2462]

    [21]

    Yang J, Chen S S, Huangfu H R, Liang P P, Zhong N 2015 Acta Phys. Sin. 64 058701 (in Chinese) [杨剑, 陈书燊, 皇甫浩然, 梁佩鹏, 钟宁 2015 64 058701]

    [22]

    Kulchandani J, Dangarwala K J 2014 Int. J. Computer Sci. Inform. Technol. 5 6739

    [23]

    Xing Y Q, Wang X D, Bi K, Hao X D 2014 Control Decis. 29 411 (in Chinese) [邢雅琼, 王晓丹, 毕凯, 郝新娣 2014 控制与决策 29 411]

    [24]

    An Y W, Wang S 2013 Chin. Phys. C 37 037006

    [25]

    Wang W B, Zhang X D, Wang X L 2013 Acta Phys. Sin. 62 050201 (in Chinese) [王文波, 张晓东, 汪祥莉 2013 62 050201]

    [26]

    Comon P 1994 Signal Processing 36 287

    [27]

    Hyvarinen A 1999 IEEE Trans. Neural Networks 10 626

    [28]

    Hyvarinen A, Oja E 1997 Neural Comput. 9 1483

    [29]

    Fu W H, Yang X N, Liu N A 2008 J. Electron. Inform. Technol. 30 1853 (in Chinese) [付卫红, 杨小牛, 刘乃安 2008 电子与信息学报 30 1853]

    [30]

    Lin J, Duan Q M, Wang Y J 2011 Theory and Design of Magnetic Resonance Sounding Instrument for Groundwater Detection and Its Applications (Vol. 1) (Beijing: Science Press) p171 (in Chinese) [林君, 段清明, 王应吉 2011 核磁 共振找水仪原理与应用 (北京: 科学出版社) 第171页]

    [31]

    Liu N 2012 Ph. D. Dissertation (Xi'an: Xidian University) (in Chinese) [刘宁 2012 博士学位论文(西安: 西安电子科技大学)]

    [32]

    Chen Y, L S X, Wang M J, Feng J C 2015 Acta Phys. Sin. 64 090501 (in Chinese) [陈越, 吕善翔, 王梦蛟, 冯久超 2015 64 090501]

    [33]

    Wu X P, Zhan C A, Zhou H Q, Feng H Q 2000 J. Univ. Sci. Technol. China 30 671 (in Chinese) [吴小培, 詹长安, 周荷琴, 冯焕清 2000 中国科学技术大学学报 30 671]

    [34]

    Yan H W, Huang X L, Zhao Y, Si J F, Liu T B, Liu H X 2014 Chin. Phys. B 23 118702

  • [1]

    Schirov M, Legchenko A, Greer G 1991 Explor. Geophys. 22 333

    [2]

    Legchenko A, Baltassat J M, Beauce A, Bernard J 2002 J. Appl. Geophys. 50 21

    [3]

    Lubczynski M, Roy J 2003 J. Hydrol. 283 19

    [4]

    Yaramanci U, Legchenko A, Roy J 2008 J. Appl. Geophys. 66 71

    [5]

    Hao H C 2013 M. S. Dissertation (Changchun: Jilin University) (in Chinese) [郝荟萃 2013 硕士学位论文 (长春: 吉林大学)]

    [6]

    Lin T T, Hui F, Jiang C D, Lin J 2013 Chinese J. Geophys. 56 2849 (in Chinese) [林婷婷, 慧芳, 蒋川东, 林君 2013 地球 56 2849]

    [7]

    Juan P, Felix R 2002 J. Appl. Geophys. 50 83

    [8]

    Chalikakis K, Nielsen M R, Legchenko A 2008 J. Appl. Geophys. 66 176

    [9]

    Legchenko A, Valla P 2002 J. Appl. Geophys. 50 3

    [10]

    Legchenko A 2007 Boletn Geolgicoy Minero 118 489

    [11]

    Legchenko A, Valla P 2003 J. Appl. Geophys. 53 103

    [12]

    Strehl S, Rommel I, Hertrich M, Yaramanci U 2006 Proceedings of the 3rd Magnetic Resonance Sounding International Workshop Madrid, Spain, October 25-27, 2006 p65

    [13]

    Strehl S 2006 M. S. Dissertation (Berlin: Technical University of Berlin)

    [14]

    Dalgaard E, Auken E, Larsen J J 2012 Geophys. J. Int. 191 88

    [15]

    Mller-Petke M, Costabel S 2014 Near Surf. Geophys. 12 199

    [16]

    Walsh D O 2008 J. Appl. Geophys. 66 140

    [17]

    Walsh D O 2008 US Patent 7 466 128 B2

    [18]

    Jiang C D, Wang Z X, Lin J, Sun S Q, Tian B F, Duan Q M, Rong L L 2009 The 4nd International Workshop on the Magnetic Resonance Sounding Method Applied to Non-invasive Groundwater Investigations Proceedings Grenoble, France, October 20-23, 2009 p101

    [19]

    Jiang C D, Lin J, Duan Q M, Sun S Q, Tian B F 2011 Near Surf. Geophys. 9 459

    [20]

    Tian B F, Lin J, Duan Q M, Jiang C D 2012 Chinese J. Geophys. 55 2462 (in Chinese) [田宝凤, 林君, 段清明, 蒋川东 2012 地球 55 2462]

    [21]

    Yang J, Chen S S, Huangfu H R, Liang P P, Zhong N 2015 Acta Phys. Sin. 64 058701 (in Chinese) [杨剑, 陈书燊, 皇甫浩然, 梁佩鹏, 钟宁 2015 64 058701]

    [22]

    Kulchandani J, Dangarwala K J 2014 Int. J. Computer Sci. Inform. Technol. 5 6739

    [23]

    Xing Y Q, Wang X D, Bi K, Hao X D 2014 Control Decis. 29 411 (in Chinese) [邢雅琼, 王晓丹, 毕凯, 郝新娣 2014 控制与决策 29 411]

    [24]

    An Y W, Wang S 2013 Chin. Phys. C 37 037006

    [25]

    Wang W B, Zhang X D, Wang X L 2013 Acta Phys. Sin. 62 050201 (in Chinese) [王文波, 张晓东, 汪祥莉 2013 62 050201]

    [26]

    Comon P 1994 Signal Processing 36 287

    [27]

    Hyvarinen A 1999 IEEE Trans. Neural Networks 10 626

    [28]

    Hyvarinen A, Oja E 1997 Neural Comput. 9 1483

    [29]

    Fu W H, Yang X N, Liu N A 2008 J. Electron. Inform. Technol. 30 1853 (in Chinese) [付卫红, 杨小牛, 刘乃安 2008 电子与信息学报 30 1853]

    [30]

    Lin J, Duan Q M, Wang Y J 2011 Theory and Design of Magnetic Resonance Sounding Instrument for Groundwater Detection and Its Applications (Vol. 1) (Beijing: Science Press) p171 (in Chinese) [林君, 段清明, 王应吉 2011 核磁 共振找水仪原理与应用 (北京: 科学出版社) 第171页]

    [31]

    Liu N 2012 Ph. D. Dissertation (Xi'an: Xidian University) (in Chinese) [刘宁 2012 博士学位论文(西安: 西安电子科技大学)]

    [32]

    Chen Y, L S X, Wang M J, Feng J C 2015 Acta Phys. Sin. 64 090501 (in Chinese) [陈越, 吕善翔, 王梦蛟, 冯久超 2015 64 090501]

    [33]

    Wu X P, Zhan C A, Zhou H Q, Feng H Q 2000 J. Univ. Sci. Technol. China 30 671 (in Chinese) [吴小培, 詹长安, 周荷琴, 冯焕清 2000 中国科学技术大学学报 30 671]

    [34]

    Yan H W, Huang X L, Zhao Y, Si J F, Liu T B, Liu H X 2014 Chin. Phys. B 23 118702

  • [1] 田宇, 林子栋, 王翔宇, 车良宇, 鲁大为. 基于自旋体系的量子机器学习实验进展.  , 2021, 70(14): 140305. doi: 10.7498/aps.70.20210684
    [2] 蒋川东, 王琦, 杜官峰, 易晓峰, 田宝凤. 地面核磁偏共振响应特征与复包络反演方法.  , 2018, 67(1): 013302. doi: 10.7498/aps.67.20171464
    [3] 孔祥宇, 朱垣晔, 闻经纬, 辛涛, 李可仁, 龙桂鲁. 核磁共振量子信息处理研究的新进展.  , 2018, 67(22): 220301. doi: 10.7498/aps.67.20180754
    [4] 潘健, 余琦, 彭新华. 多量子比特核磁共振体系的实验操控技术.  , 2017, 66(15): 150302. doi: 10.7498/aps.66.150302
    [5] 胡洋, 王秋良, 李毅, 朱旭晨, 牛超群. 基于边界元方法的超导核磁共振成像设备高阶轴向匀场线圈优化算法.  , 2016, 65(21): 218301. doi: 10.7498/aps.65.218301
    [6] 吴量, 陈方, 黄重阳, 丁国辉, 丁义明. 基于改进非线性拟合的核磁共振T2谱多指数反演.  , 2016, 65(10): 107601. doi: 10.7498/aps.65.107601
    [7] 凌宏胜, 田佳欣, 周淑娜, 魏达秀. Ising耦合体系中量子傅里叶变换的优化.  , 2015, 64(17): 170301. doi: 10.7498/aps.64.170301
    [8] 李政, 周睿, 郑国庆. 铁基超导体的量子临界行为.  , 2015, 64(21): 217404. doi: 10.7498/aps.64.217404
    [9] 李俊, 崔江煜, 杨晓东, 罗智煌, 潘健, 余琦, 李兆凯, 彭新华, 杜江峰. 核磁共振中的量子控制.  , 2015, 64(16): 167601. doi: 10.7498/aps.64.167601
    [10] 李新, 肖立志, 刘化冰, 张宗富, 郭葆鑫, 于慧俊, 宗芳荣. 优化重聚脉冲提高梯度场核磁共振信号强度.  , 2013, 62(14): 147602. doi: 10.7498/aps.62.147602
    [11] 王文波, 张晓东, 汪祥莉. 基于独立成分分析和经验模态分解的混沌信号降噪.  , 2013, 62(5): 050201. doi: 10.7498/aps.62.050201
    [12] 姚淅伟, 曾碧榕, 刘钦, 牟晓阳, 林星程, 杨春, 潘健, 陈忠. 基于核磁共振的子空间量子过程重构.  , 2010, 59(10): 6837-6841. doi: 10.7498/aps.59.6837
    [13] 李绍, 任育峰, 王宁, 田野, 储海峰, 黎松林, 陈莺飞, 李洁, 陈赓华, 郑东宁. 利用高温超导直流量子干涉器件进行10-6 T量级磁场下核磁共振的研究.  , 2009, 58(8): 5744-5749. doi: 10.7498/aps.58.5744
    [14] 许 峰, 刘堂晏, 黄永仁. 油水饱和球管孔隙模型弛豫的理论计算与计算机模拟.  , 2008, 57(1): 550-555. doi: 10.7498/aps.57.550
    [15] 潘克家, 陈 华, 谭永基. 基于差分进化算法的核磁共振T2谱多指数反演.  , 2008, 57(9): 5956-5961. doi: 10.7498/aps.57.5956
    [16] 许 峰, 刘堂晏, 黄永仁. 射频场照射下多自旋体系弛豫的理论计算.  , 2006, 55(6): 3054-3059. doi: 10.7498/aps.55.3054
    [17] 王 鹤, 李鲠颖. 反演与拟合相结合处理核磁共振弛豫数据的方法.  , 2005, 54(3): 1431-1436. doi: 10.7498/aps.54.1431
    [18] 许峰, 黄永仁. 特形脉冲的设计与计算机模拟.  , 2002, 51(11): 2617-2622. doi: 10.7498/aps.51.2617
    [19] 许峰, 黄永仁. 射频场照射下同核体系的弛豫.  , 2002, 51(2): 415-419. doi: 10.7498/aps.51.415
    [20] 许峰, 黄永仁. 射频场照射下扩展的Solomon方程及射频场的照射对异核体系弛豫速率与NOE的影响.  , 2002, 51(6): 1371-1376. doi: 10.7498/aps.51.1371
计量
  • 文章访问数:  6699
  • PDF下载量:  240
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-03-18
  • 修回日期:  2015-07-14
  • 刊出日期:  2015-11-05

/

返回文章
返回
Baidu
map