搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

优化重聚脉冲提高梯度场核磁共振信号强度

李新 肖立志 刘化冰 张宗富 郭葆鑫 于慧俊 宗芳荣

引用本文:
Citation:

优化重聚脉冲提高梯度场核磁共振信号强度

李新, 肖立志, 刘化冰, 张宗富, 郭葆鑫, 于慧俊, 宗芳荣

Optimization of nuclear magnetic resonance refocusing pulses to enhance signal intensity in gradient B0 field

Li Xin, Xiao Li-Zhi, Liu Hua-Bing, Zhang Zong-Fu, Guo Bao-Xin, Yu Hui-Jun, Zong Fang-Rong
PDF
导出引用
  • 缩短射频脉冲宽度, 有助于解决脉冲电力消耗大、样品吸收率高、信噪比低等极端条件核磁共振探测的关键问题. 本文首先分析射频脉冲角度对核磁共振自旋回波信号强度的影响机理, 基于Bloch方程推导了回波信号幅度与扳转角、重聚角的关系. 在特制核磁共振分析仪上采用变脉冲角度技术, 分别在均匀磁场和梯度磁场条件下实现对扳转角和重聚角与回波信号强度关系的数值模拟和实验测量. 结果表明, 梯度场中, 扳转角为90°、重聚角为140°的射频脉冲组合获得最大首波信号强度, 比180°脉冲对应的回波幅值提高13%, 能耗降低至78%. 选用该重聚角(140°) 优化设计饱和恢复脉冲序列探测流体的纵向弛豫时间T1特性, 准确获得 T1分布.该结果对于低电力供应、且对信噪比有较高要求的核磁共振测量, 如随钻核磁共振测井和在线核磁共振快速检测等, 具有重要意义.
    It is an efficient protocol to use the refocusing flip angle pulse optimization technique to solve special engineering technical problems in nuclear magnetic resonance (NMR) measurements. By reducing RF pulse duration, the low refocusing flip angle pulses can consume lower power, satisfy specific absorption rate of samples, and improve signal-to-noise ratio as well. To further analyze the function mechanism of pulse angles, the dependence of signal intensity on RF pulse is studied in homogenous magnetic field and constant gradient magnetic field respectively. Afterwards, echo amplitudes with various tip angles and flip angles ranging from 0° to 180° are compared with conventional sequence of 90° pulse followed by 180° pulses theoretically and experimentally. For the constant gradient field, the refocusing pulse of flip angle can be as low as 140°, defined as the optimum herein, to obtain the strongest signal intensity, enhanced by 13% compared with that of 180°. Moreover, T1 distributions measured by the conventional and optimal sequences for distilled water at room temperature are compared, and good conformances of T1 between the two pulse sequences are obtained, which demonstrates the optimal refocusing pulse can be directly applied to T1 measurement. The results provide constructive suggestion for designing pulse sequences for signal intensity enhancement in NMR logging while drilling and NMR online quick analysis.
    • 基金项目: 国家自然科学基金(批准号: 41074102, 41130417);国家111计划(批准号: B13010)和教育部长江学者和创新团队发展计划资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 41074102, 41130417), “111 Program” of China (Grant No. B13010) and the Program for Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China.
    [1]

    Hennig J, Friedburg H 1988 Magn. Reson. Imaging 6 391

    [2]

    Alsop D C 1997 Magn. Reson. Med. 37 176

    [3]

    Hennig J, Nauerth A, Friedburg H 1986 Magn. Reson. Med. 3 823

    [4]

    Haase A, Frahm J, Matthaei D, Hänicke W, Merboldt K D 1986 J. Magn. Reson. 67 258

    [5]

    McIntyre D J O, Hennel F, Morris P G 1998 J. Magn. Reson. 130 58

    [6]

    Andrade F D, Netto A M, Colnago L A 2011 Talanta 84 84

    [7]

    Andrade F D, Netto A M, Colnago L A 2012 J. Magn. Reson. 214 184

    [8]

    Hrlimann M D, Griffin D D 2000 J. Magn. Reson. 143 120

    [9]

    Song Y Q 2002 J. Magn. Reson. 157 82

    [10]

    Reiderman A, Itskovich G, Krugliak Z, Beard D R 2001 Magn. Reson. Imaging 19 569

    [11]

    Li X, Xiao L Z, Liu H B 2011 Well Logging Technol. 35 200 (in Chinese) [李新, 肖立志, 刘化冰 2011测井技术 35 200]

    [12]

    Coates G R, Xiao L Z, Prammer M G 1999 NMR Logging Principles and Applications (Houston: Halliburton Energy Services) p101

    [13]

    Zu D L 2004 Magnetic Resonance Imaging (Beijing: Higher Education Press) p83 (in Chinese) [俎栋林 2004 核磁共振成像学(北京: 高等教育出版社) 第83页]

    [14]

    Bloch F 1946 Phys. Rev. 70 460

    [15]

    Chen J F, Liu W Q, Zhong W X 2006 Acta Phys. Sin. 55 884 [陈杰夫, 刘婉秋, 钟万勰 2006 55 884]

    [16]

    Casanova F, Perlo J, Blmich B 2011 Single-Sided NMR (Berlin Heidelberg: Springer-Verlag) p12

    [17]

    Anferova S, Anferov V, Rata D G, Blmich B, Arnold J, Clauser C, Blmler P, Raich H 2004 Concepts Magn. Reson. B 23B 26

    [18]

    Anferova S, Anferov V, Arnold J, Talnishnikh E, Voda M A, Kupferschlager K, Blmler P, Clauser C, Blmich B 2007 Magn. Reson. Imaging 25 474

  • [1]

    Hennig J, Friedburg H 1988 Magn. Reson. Imaging 6 391

    [2]

    Alsop D C 1997 Magn. Reson. Med. 37 176

    [3]

    Hennig J, Nauerth A, Friedburg H 1986 Magn. Reson. Med. 3 823

    [4]

    Haase A, Frahm J, Matthaei D, Hänicke W, Merboldt K D 1986 J. Magn. Reson. 67 258

    [5]

    McIntyre D J O, Hennel F, Morris P G 1998 J. Magn. Reson. 130 58

    [6]

    Andrade F D, Netto A M, Colnago L A 2011 Talanta 84 84

    [7]

    Andrade F D, Netto A M, Colnago L A 2012 J. Magn. Reson. 214 184

    [8]

    Hrlimann M D, Griffin D D 2000 J. Magn. Reson. 143 120

    [9]

    Song Y Q 2002 J. Magn. Reson. 157 82

    [10]

    Reiderman A, Itskovich G, Krugliak Z, Beard D R 2001 Magn. Reson. Imaging 19 569

    [11]

    Li X, Xiao L Z, Liu H B 2011 Well Logging Technol. 35 200 (in Chinese) [李新, 肖立志, 刘化冰 2011测井技术 35 200]

    [12]

    Coates G R, Xiao L Z, Prammer M G 1999 NMR Logging Principles and Applications (Houston: Halliburton Energy Services) p101

    [13]

    Zu D L 2004 Magnetic Resonance Imaging (Beijing: Higher Education Press) p83 (in Chinese) [俎栋林 2004 核磁共振成像学(北京: 高等教育出版社) 第83页]

    [14]

    Bloch F 1946 Phys. Rev. 70 460

    [15]

    Chen J F, Liu W Q, Zhong W X 2006 Acta Phys. Sin. 55 884 [陈杰夫, 刘婉秋, 钟万勰 2006 55 884]

    [16]

    Casanova F, Perlo J, Blmich B 2011 Single-Sided NMR (Berlin Heidelberg: Springer-Verlag) p12

    [17]

    Anferova S, Anferov V, Rata D G, Blmich B, Arnold J, Clauser C, Blmler P, Raich H 2004 Concepts Magn. Reson. B 23B 26

    [18]

    Anferova S, Anferov V, Arnold J, Talnishnikh E, Voda M A, Kupferschlager K, Blmler P, Clauser C, Blmich B 2007 Magn. Reson. Imaging 25 474

  • [1] 田宇, 林子栋, 王翔宇, 车良宇, 鲁大为. 基于自旋体系的量子机器学习实验进展.  , 2021, 70(14): 140305. doi: 10.7498/aps.70.20210684
    [2] 蒋川东, 王琦, 杜官峰, 易晓峰, 田宝凤. 地面核磁偏共振响应特征与复包络反演方法.  , 2018, 67(1): 013302. doi: 10.7498/aps.67.20171464
    [3] 孔祥宇, 朱垣晔, 闻经纬, 辛涛, 李可仁, 龙桂鲁. 核磁共振量子信息处理研究的新进展.  , 2018, 67(22): 220301. doi: 10.7498/aps.67.20180754
    [4] 潘健, 余琦, 彭新华. 多量子比特核磁共振体系的实验操控技术.  , 2017, 66(15): 150302. doi: 10.7498/aps.66.150302
    [5] 吴量, 陈方, 黄重阳, 丁国辉, 丁义明. 基于改进非线性拟合的核磁共振T2谱多指数反演.  , 2016, 65(10): 107601. doi: 10.7498/aps.65.107601
    [6] 凌宏胜, 田佳欣, 周淑娜, 魏达秀. Ising耦合体系中量子傅里叶变换的优化.  , 2015, 64(17): 170301. doi: 10.7498/aps.64.170301
    [7] 李政, 周睿, 郑国庆. 铁基超导体的量子临界行为.  , 2015, 64(21): 217404. doi: 10.7498/aps.64.217404
    [8] 李俊, 崔江煜, 杨晓东, 罗智煌, 潘健, 余琦, 李兆凯, 彭新华, 杜江峰. 核磁共振中的量子控制.  , 2015, 64(16): 167601. doi: 10.7498/aps.64.167601
    [9] 田宝凤, 周媛媛, 王悦, 李振宇, 易晓峰. 基于独立成分分析的全波核磁共振信号噪声滤除方法研究.  , 2015, 64(22): 229301. doi: 10.7498/aps.64.229301
    [10] 姚淅伟, 曾碧榕, 刘钦, 牟晓阳, 林星程, 杨春, 潘健, 陈忠. 基于核磁共振的子空间量子过程重构.  , 2010, 59(10): 6837-6841. doi: 10.7498/aps.59.6837
    [11] 李绍, 任育峰, 王宁, 田野, 储海峰, 黎松林, 陈莺飞, 李洁, 陈赓华, 郑东宁. 利用高温超导直流量子干涉器件进行10-6 T量级磁场下核磁共振的研究.  , 2009, 58(8): 5744-5749. doi: 10.7498/aps.58.5744
    [12] 龙拥兵, 张剑, 汪国平. 基于表面等离子体激元共振的飞秒抽运探测技术研究.  , 2009, 58(11): 7722-7726. doi: 10.7498/aps.58.7722
    [13] 许 峰, 刘堂晏, 黄永仁. 油水饱和球管孔隙模型弛豫的理论计算与计算机模拟.  , 2008, 57(1): 550-555. doi: 10.7498/aps.57.550
    [14] 潘克家, 陈 华, 谭永基. 基于差分进化算法的核磁共振T2谱多指数反演.  , 2008, 57(9): 5956-5961. doi: 10.7498/aps.57.5956
    [15] 许 峰, 刘堂晏, 黄永仁. 射频场照射下多自旋体系弛豫的理论计算.  , 2006, 55(6): 3054-3059. doi: 10.7498/aps.55.3054
    [16] 陈杰夫, 刘婉秋, 钟万勰. Bloch方程的精细时程积分及其在射频脉冲设计中的应用.  , 2006, 55(2): 884-890. doi: 10.7498/aps.55.884
    [17] 王 鹤, 李鲠颖. 反演与拟合相结合处理核磁共振弛豫数据的方法.  , 2005, 54(3): 1431-1436. doi: 10.7498/aps.54.1431
    [18] 许峰, 黄永仁. 射频场照射下同核体系的弛豫.  , 2002, 51(2): 415-419. doi: 10.7498/aps.51.415
    [19] 许峰, 黄永仁. 射频场照射下扩展的Solomon方程及射频场的照射对异核体系弛豫速率与NOE的影响.  , 2002, 51(6): 1371-1376. doi: 10.7498/aps.51.1371
    [20] 许峰, 黄永仁. 特形脉冲的设计与计算机模拟.  , 2002, 51(11): 2617-2622. doi: 10.7498/aps.51.2617
计量
  • 文章访问数:  7700
  • PDF下载量:  636
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-01-05
  • 修回日期:  2013-03-22
  • 刊出日期:  2013-07-05

/

返回文章
返回
Baidu
map