Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Preparation and magnetic properties of (Ln0.2La0.2Nd0.2Sm0.2Eu0.2)MnO3 (Ln = Dy, Ho, Er) high-entropy perovskite ceramics containing heavy rare earth elements

QIN Jiedong FENG Xingmin WEN Zhiqin TANG Li LONG Defeng ZHAO Yuhong

Citation:

Preparation and magnetic properties of (Ln0.2La0.2Nd0.2Sm0.2Eu0.2)MnO3 (Ln = Dy, Ho, Er) high-entropy perovskite ceramics containing heavy rare earth elements

QIN Jiedong, FENG Xingmin, WEN Zhiqin, TANG Li, LONG Defeng, ZHAO Yuhong
cstr: 32037.14.aps.74.20250256
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Equimolar ratio high-entropy perovskite ceramics (HEPCs) have attracted much attention due to their excellent magnetization intensity. To further enhance their magnetization intensities, (Ln0.2La0.2Nd0.2Sm0.2Eu0.2)MnO3 (Ln = Dy, Ho and Er, labeled as Ln-LNSEMO) HEPCs are designed based on the configuration entropy Sconfig, tolerance factor t, and mismatch degree σ2. Single-phase HEPCs are synthesized by the solid-phase method in this work, in which the effects of the heavy rare-earth elements Dy, Ho and Er on the structure and magnetic properties of Ln-LNSEMO are systematically studied. The results show that all Ln-LNSEMO HEPCs exhibit high crystallinity and maintain excellent structural stability after sintering at 1250 ℃ for 16 h. Ln-LNSEMO HEPCs exhibit significant lattice distortion effects, with smooth surface morphology, clearly distinguishable grain boundaries, and irregular polygonal shapes. In the present work, the influences of A-site average ion radius, grain size and lattice distortion on the magnetic interactions of Ln-LNSEMO HEPCs are investigated. The three high-entropy ceramic samples exhibit hysteresis behavior at T = 5 K, with the Curie temperature TC decreasing as the radius of the introduced rare-earth ions decreases, while the saturation magnetization and coercivity increase accordingly. When the average ionic radius of A-site decreases, the interaction between their valence electrons and local electrons in the crystal increases, thereby enhancing the conversion of electrons to oriented magnetic moments under an external magnetic field. Thus, Er-LNSEMO HEPC shows a higher saturation magnetization strength (42.8 emu/g) and coercivity (2.09 kOe) than the other samples, which is attributed to the strong magnetic crystal anisotropy, larger lattice distortion σ2 (6.52×10–3), smaller average grain size (440.49 ± 22.02 nm), unit cell volume (229.432 Å3) and A-site average ion radius (1.24 Å) of its magnet. The Er-LNSEMO HEPC has potential applications in magnetic recording materials.
      Corresponding author: WEN Zhiqin, wenzhiqin@glut.edu.cn
    • Funds: Project supported by the Natural Science Foundation of Guangxi Province, China (Grant No. 2024GXNSFAA010415) and the Science and Technology Plan Project of Guangxi Province, China (Grant No. GuikeAD25069100).
    [1]

    George E P, Ritchie R O 2022 MRS Bull. 47 145Google Scholar

    [2]

    Rost C M, Sachet E, Borman T, Moballegh A, Dickey E C, Hou D, Jones J L, Curtarolo S, Maria J P 2015 Nat. Commun. 6 8485Google Scholar

    [3]

    Hai W X, Wu Z H, Zhang S B, Chen H, Hu L, Zhang H, Sun W Z, Liu M L, Chen Y H 2023 Int. J. Refract. Met. Hard Mater. 112 106114Google Scholar

    [4]

    Zhou Q, Xu F, Gao C Z, Zhao W X, Shu L, Shi X Q, Yuen M F, Zuo D W 2023 Ceram. Int. 49 25964Google Scholar

    [5]

    Zhang Y, Guo W M, Jiang Z B, Zhu Q Q, Sun S K, You Y, Plucknett K, Lin H T 2019 Scr. Mater. 164 135Google Scholar

    [6]

    李汪国, 刘佃光, 王珂玮, 马百胜, 刘金铃 2022 无机材料学报 37 1289Google Scholar

    Li W G, Liu D G, Wang K W, Ma B S, Liu J L 2022 J. Inorg. Mater. 37 1289Google Scholar

    [7]

    Gautam A, Das S, Ahmad M I 2024 Surf. Interfaces 46 104054Google Scholar

    [8]

    Xie M, Lai Y, Xiang P, Liu F, Zhang L, Liao X, Huang H, Liu Q, Wu C, Li Y 2024 Biochem. Eng. J. 496 154132Google Scholar

    [9]

    Xiong W, Zhang H F, Cao S Y, Gao F, Svec P, Dusza J, Reece M J, Yan H X 2021 J. Eur. Ceram. Soc. 41 2979Google Scholar

    [10]

    郭猛, 张丰年, 苗洋, 刘宇峰, 郁军, 高峰 2021 无机材料学报 36 431Google Scholar

    Guo M, Zhang F N, Miao Y, Liu Y F, Yu J, Gao F 2021 J. Inorg. Mater. 36 431Google Scholar

    [11]

    Sang X H, Grimley E D, Niu C N, Irving D L, LeBeau J M 2015 Appl. Phys. Lett. 106 061913Google Scholar

    [12]

    Ning Y T, Pu Y P, Zhang Q W, Zhou S Y, Wu C H, Zhang L, Shi Y, Sun Z X 2023 Ceram. Int. 49 12214Google Scholar

    [13]

    Medarde M L 1997 J. Phys. : Condens. Matter 9 1679Google Scholar

    [14]

    史镇华, 胡新哲, 周厚博, 田正营, 胡凤霞, 陈允忠, 孙志刚, 沈保根 2025 74 027501Google Scholar

    Shi Z H, Hu X Z, Zhou H B, Tian Z Y, Hu F X, Chen Y Z, Sun Z G, Shen B G 2025 Acta. Phys. Sin. 74 027501Google Scholar

    [15]

    Zhao W J, Zhang M, Xue L Y, Wang K X, Yang F, Zhong J P, Chen H 2024 J. Rare Earths 42 1937Google Scholar

    [16]

    Krawczyk P A, Salamon W, Marzec M, Szuwarzynski M, Pawlak J, Kanak J, Dziubaniuk M, Kubiak W W, Zywczak A 2023 Materials 16 4210Google Scholar

    [17]

    Witte R, Sarkar A, Velasco L, Kruk R, Brand R A, Eggert B, Ollefs K, Weschke E, Wende H, Hahn H 2020 J. Appl. Phys. 127 185109Google Scholar

    [18]

    Qin J D, Wen Z Q, Ma B, Wu Z, Lü Y, Yu J, Zhao Y H 2024 J. Magn. Magn. Mater. 597 172010Google Scholar

    [19]

    Qin J D, Wen Z Q, Ma B, Wu Z Y, Yu J J, Tang L, Lu T Y, Zhao Y H 2024 Ceram. Int. 50 26040Google Scholar

    [20]

    Stoica I, Abraham A R, Haghi A 2023 Modern Magnetic Materials: Properties and Applications (CRC Press

    [21]

    李梅, 柳召刚, 吴锦绣, 胡艳宏 2009 稀土元素及其分析化学(北京: 化学工业出版社) 第49—55页

    Li M, Liu Z G, Wu J X, Hu Y H 2009 Rare Earth Elements and Their Analytical Chemistry (Beijing: Chemical Industry Press) pp49–55

    [22]

    Zhivulin V E, Trofimov E A, Gudkova S A, Punda A Y, Valiulina A N, Gavrilyak A M, Zaitseva O V, Tishkevich D I, Zubar T I, Sun Z, Zhou D, Trukhanov S V, Vinnik D A, Trukhanov A V 2022 Ceram. Int. 48 9239Google Scholar

    [23]

    Sarkar A, Djenadic R, Wang D, Hein C, Kautenburger R, Clemens O, Hahn H 2018 J. Eur. Ceram. Soc. 38 2318Google Scholar

    [24]

    Goldschmidt V M 1926 Naturwiss 14 477Google Scholar

    [25]

    Shannon R D 1976 Acta Crystallogr. Sect. A 32 751Google Scholar

    [26]

    Han X, Yang Y, Fan Y, Ni H, Guo Y M, Chen Y, Ou X M, Ling Y H 2021 Ceram. Int. 47 17383Google Scholar

    [27]

    Liu J M, Jiang Y, Zhang W C, Cheng X, Zhao P Y, Zhen Y C, Hao Y N, Guo L M, Bi K, Wang X H 2024 Nat. Commun. 15 8651Google Scholar

    [28]

    Zhang P, Gong L Y, Xu X, Lou Z H, Wei Z Y, Chen P H, Wu Z Z, Xu J, Gao F 2023 Chem. Eng. J. 472 144974Google Scholar

    [29]

    Alonso J A, Martinez-Lope M J, Casais M T, Fernández-Díaz M T 2000 Inorg. Chem. 39 917Google Scholar

    [30]

    Shirley D A 1972 Phys. Rev. B 5 4709Google Scholar

    [31]

    Wei S Y, Chen X, Dong G Z, Liu L J, Zhang Q, Peng B L 2022 Ceram. Int. 48 15640Google Scholar

    [32]

    Lin J L, Wu S, Sun K T, Li H F, Chen W, Zhang Y K, Li L W 2024 Ceram. Int. 50 51269Google Scholar

    [33]

    Li A S, Wei J J, Lin J L, Zhang Y K 2024 Ceram. Int. 50 13732Google Scholar

    [34]

    Pashchenko A V, Pashchenko V P, Prokopenko V K, Revenko Y F, Mazur A S, Sychova V Y, Burkhoveckiy V V, Kisel N G, Sil'cheva A G, Liedienov N A 2014 Low Temp. Phys. 40 717Google Scholar

    [35]

    Kim M, Yang J, Cai Q, Zhou X, James W J, Yelon W B, Parris P E, Buddhikot D, Malik S K 2005 Phys. Rev. B: Condens. Matter 71 014433Google Scholar

    [36]

    Zener C 1951 Phys. Rev. 82 403Google Scholar

    [37]

    Benelli C, Gatteschi D 2002 Chem. Rev. 102 2369Google Scholar

    [38]

    Majetich S A, Scott J H, Kirkpatrick E M, Chowdary K, Gallagher K, McHenry M E 1997 Nanostruct. Mater. 9 291Google Scholar

    [39]

    Jiao Y T, Dai J, Fan Z H, Cheng J Y, Zheng G P, Grema L, Zhong J W, Li H F, Wang D W 2024 Mater. Today 77 92Google Scholar

    [40]

    Shen J Y, Mo J J, Lu Z Y, Tao Y C, Gao K Y, Liu M, Xia Y F 2022 Physica B 644 414213Google Scholar

    [41]

    Chatterjee S, Das K, Das I 2022 J. Magn. Magn. Mater. 557 169473Google Scholar

  • 图 1  1250 ℃下煅烧所得Ln-LNSEMO陶瓷的性质 (a) A位平均离子半径; (b)容差因子t、构型熵Sconfig和失配度σ2的理论计算值; (c) XRD图谱; (d)—(f) Rietveld精修图谱

    Figure 1.  Characteristics of Ln-LNSEMO ceramics sintered at 1250 ℃: (a) Average ionic radius of A-site; (b) theoretical calculation values of tolerance factor t, configuration entropy Sconfig and mismatch degree σ2; (c) X-ray diffraction patterns; (d)–(f) rietveld refinement.

    图 2  Ln-LNSEMO陶瓷Rietveld精修后的晶格参数(a)、晶胞体积(b)以及样品的晶体结构(c)

    Figure 2.  Lattice parameters (a), cell volume (b) of Ln-LNSEMO ceramics after Rietveld refinement and crystal structure of samples (c)

    图 3  1250 °C下烧结的Ln-LNSEMO HEPCs的SEM图、粒度分布、EDS图谱和化学成分(%) (a), (a1) Dy-LNSEMO; (b), (b1) Ho-LNSEMO; (c), (c1) Er-LNSEMO

    Figure 3.  SEM micrographs, particle size distribution, EDS mapping and chemical composition (%) of Ln-LNSEMO HEPCs sintered at 1250 °C: (a), (a1) Dy-LNSEMO; (b), (b1) Ho-LNSEMO; (c), (c1) Er-LNSEMO.

    图 4  Ln-LNSEMO HEPCs的高分辨率XPS光谱 (a) O 1s; (b) Mn 2p; (c) Dy 3d; (d) Ho 4d; (e) Er 4d

    Figure 4.  High-resolution XPS spectra of Ln-LNSEMO HEPCs: (a) O 1s; (b) Mn 2p; (c) Dy 3d; (d) Ho 4d; (e) Er 4d.

    图 5  Ln-LNSEMO HEPCs的M-T曲线(a)和dM/dT-T曲线(b)

    Figure 5.  M-T curves (a) and dM/dT-T curves (b) of Ln-LNSEMO HEPCs.

    图 6  Ln-LNSEMO HEPCs的T = 5 K时的磁滞回线(a)和低磁场区域(b)的磁化曲线

    Figure 6.  Hysteresis loops at T = 5 K (a), the magnified magnetization curves in the low magnetic field region (b) of Ln-LNSEMO HEPCs.

    图 7  Ln-LNSEMO HEPCs的磁性能参数

    Figure 7.  Magnetic properties parameters of Ln-LNSEMO HEPCs.

    表 1  氧化态、配位数(CN)和相应的离子半径(r)[23]

    Table 1.  Oxidation state, co-ordination number (CN) and corresponding ionic radius (r)[23].

    ElementOxidationCNr
    La3+XII1.36
    Nd3+XII1.27
    Sm3+XII1.24
    Eu3+XII1.22
    Dy3+XII1.19
    Ho3+XII1.18
    Er3+XII1.11
    Mn3+VI0.64
    O2VI1.40
    DownLoad: CSV

    表 2  三组样品Rietveld精修后的键长d和键角θ

    Table 2.  Bond length d and bond angle θ of three groups of Rietveld refined samples.

    Samples ${d _\text{Mn—O}} $/Å ${\theta _\text{Mn—O—Mn}} $/(°)
    Dy-LNSEMO 1.9157(3) 148.167(6)
    Ho-LNSEMO 1.9357(2) 141.748(6)
    Er-LNSEMO 1.9500(3) 152.118(4)
    DownLoad: CSV
    Baidu
  • [1]

    George E P, Ritchie R O 2022 MRS Bull. 47 145Google Scholar

    [2]

    Rost C M, Sachet E, Borman T, Moballegh A, Dickey E C, Hou D, Jones J L, Curtarolo S, Maria J P 2015 Nat. Commun. 6 8485Google Scholar

    [3]

    Hai W X, Wu Z H, Zhang S B, Chen H, Hu L, Zhang H, Sun W Z, Liu M L, Chen Y H 2023 Int. J. Refract. Met. Hard Mater. 112 106114Google Scholar

    [4]

    Zhou Q, Xu F, Gao C Z, Zhao W X, Shu L, Shi X Q, Yuen M F, Zuo D W 2023 Ceram. Int. 49 25964Google Scholar

    [5]

    Zhang Y, Guo W M, Jiang Z B, Zhu Q Q, Sun S K, You Y, Plucknett K, Lin H T 2019 Scr. Mater. 164 135Google Scholar

    [6]

    李汪国, 刘佃光, 王珂玮, 马百胜, 刘金铃 2022 无机材料学报 37 1289Google Scholar

    Li W G, Liu D G, Wang K W, Ma B S, Liu J L 2022 J. Inorg. Mater. 37 1289Google Scholar

    [7]

    Gautam A, Das S, Ahmad M I 2024 Surf. Interfaces 46 104054Google Scholar

    [8]

    Xie M, Lai Y, Xiang P, Liu F, Zhang L, Liao X, Huang H, Liu Q, Wu C, Li Y 2024 Biochem. Eng. J. 496 154132Google Scholar

    [9]

    Xiong W, Zhang H F, Cao S Y, Gao F, Svec P, Dusza J, Reece M J, Yan H X 2021 J. Eur. Ceram. Soc. 41 2979Google Scholar

    [10]

    郭猛, 张丰年, 苗洋, 刘宇峰, 郁军, 高峰 2021 无机材料学报 36 431Google Scholar

    Guo M, Zhang F N, Miao Y, Liu Y F, Yu J, Gao F 2021 J. Inorg. Mater. 36 431Google Scholar

    [11]

    Sang X H, Grimley E D, Niu C N, Irving D L, LeBeau J M 2015 Appl. Phys. Lett. 106 061913Google Scholar

    [12]

    Ning Y T, Pu Y P, Zhang Q W, Zhou S Y, Wu C H, Zhang L, Shi Y, Sun Z X 2023 Ceram. Int. 49 12214Google Scholar

    [13]

    Medarde M L 1997 J. Phys. : Condens. Matter 9 1679Google Scholar

    [14]

    史镇华, 胡新哲, 周厚博, 田正营, 胡凤霞, 陈允忠, 孙志刚, 沈保根 2025 74 027501Google Scholar

    Shi Z H, Hu X Z, Zhou H B, Tian Z Y, Hu F X, Chen Y Z, Sun Z G, Shen B G 2025 Acta. Phys. Sin. 74 027501Google Scholar

    [15]

    Zhao W J, Zhang M, Xue L Y, Wang K X, Yang F, Zhong J P, Chen H 2024 J. Rare Earths 42 1937Google Scholar

    [16]

    Krawczyk P A, Salamon W, Marzec M, Szuwarzynski M, Pawlak J, Kanak J, Dziubaniuk M, Kubiak W W, Zywczak A 2023 Materials 16 4210Google Scholar

    [17]

    Witte R, Sarkar A, Velasco L, Kruk R, Brand R A, Eggert B, Ollefs K, Weschke E, Wende H, Hahn H 2020 J. Appl. Phys. 127 185109Google Scholar

    [18]

    Qin J D, Wen Z Q, Ma B, Wu Z, Lü Y, Yu J, Zhao Y H 2024 J. Magn. Magn. Mater. 597 172010Google Scholar

    [19]

    Qin J D, Wen Z Q, Ma B, Wu Z Y, Yu J J, Tang L, Lu T Y, Zhao Y H 2024 Ceram. Int. 50 26040Google Scholar

    [20]

    Stoica I, Abraham A R, Haghi A 2023 Modern Magnetic Materials: Properties and Applications (CRC Press

    [21]

    李梅, 柳召刚, 吴锦绣, 胡艳宏 2009 稀土元素及其分析化学(北京: 化学工业出版社) 第49—55页

    Li M, Liu Z G, Wu J X, Hu Y H 2009 Rare Earth Elements and Their Analytical Chemistry (Beijing: Chemical Industry Press) pp49–55

    [22]

    Zhivulin V E, Trofimov E A, Gudkova S A, Punda A Y, Valiulina A N, Gavrilyak A M, Zaitseva O V, Tishkevich D I, Zubar T I, Sun Z, Zhou D, Trukhanov S V, Vinnik D A, Trukhanov A V 2022 Ceram. Int. 48 9239Google Scholar

    [23]

    Sarkar A, Djenadic R, Wang D, Hein C, Kautenburger R, Clemens O, Hahn H 2018 J. Eur. Ceram. Soc. 38 2318Google Scholar

    [24]

    Goldschmidt V M 1926 Naturwiss 14 477Google Scholar

    [25]

    Shannon R D 1976 Acta Crystallogr. Sect. A 32 751Google Scholar

    [26]

    Han X, Yang Y, Fan Y, Ni H, Guo Y M, Chen Y, Ou X M, Ling Y H 2021 Ceram. Int. 47 17383Google Scholar

    [27]

    Liu J M, Jiang Y, Zhang W C, Cheng X, Zhao P Y, Zhen Y C, Hao Y N, Guo L M, Bi K, Wang X H 2024 Nat. Commun. 15 8651Google Scholar

    [28]

    Zhang P, Gong L Y, Xu X, Lou Z H, Wei Z Y, Chen P H, Wu Z Z, Xu J, Gao F 2023 Chem. Eng. J. 472 144974Google Scholar

    [29]

    Alonso J A, Martinez-Lope M J, Casais M T, Fernández-Díaz M T 2000 Inorg. Chem. 39 917Google Scholar

    [30]

    Shirley D A 1972 Phys. Rev. B 5 4709Google Scholar

    [31]

    Wei S Y, Chen X, Dong G Z, Liu L J, Zhang Q, Peng B L 2022 Ceram. Int. 48 15640Google Scholar

    [32]

    Lin J L, Wu S, Sun K T, Li H F, Chen W, Zhang Y K, Li L W 2024 Ceram. Int. 50 51269Google Scholar

    [33]

    Li A S, Wei J J, Lin J L, Zhang Y K 2024 Ceram. Int. 50 13732Google Scholar

    [34]

    Pashchenko A V, Pashchenko V P, Prokopenko V K, Revenko Y F, Mazur A S, Sychova V Y, Burkhoveckiy V V, Kisel N G, Sil'cheva A G, Liedienov N A 2014 Low Temp. Phys. 40 717Google Scholar

    [35]

    Kim M, Yang J, Cai Q, Zhou X, James W J, Yelon W B, Parris P E, Buddhikot D, Malik S K 2005 Phys. Rev. B: Condens. Matter 71 014433Google Scholar

    [36]

    Zener C 1951 Phys. Rev. 82 403Google Scholar

    [37]

    Benelli C, Gatteschi D 2002 Chem. Rev. 102 2369Google Scholar

    [38]

    Majetich S A, Scott J H, Kirkpatrick E M, Chowdary K, Gallagher K, McHenry M E 1997 Nanostruct. Mater. 9 291Google Scholar

    [39]

    Jiao Y T, Dai J, Fan Z H, Cheng J Y, Zheng G P, Grema L, Zhong J W, Li H F, Wang D W 2024 Mater. Today 77 92Google Scholar

    [40]

    Shen J Y, Mo J J, Lu Z Y, Tao Y C, Gao K Y, Liu M, Xia Y F 2022 Physica B 644 414213Google Scholar

    [41]

    Chatterjee S, Das K, Das I 2022 J. Magn. Magn. Mater. 557 169473Google Scholar

  • [1] Yuan Xiang, Zhang Zifa, Wang Mingji, He Danmin, Lu Yingshen, Hong Feng, Jiang Zuimin, Xu Run, Wang Yingmin, Ma Zhongquan, Song Hongwei, Xu Fei. Dual-absorption-layer Heterojunction Strategy for enhancing the photovoltaic performance of all-perovskite tandem solar cell. Acta Physica Sinica, 2025, 74(14): . doi: 10.7498/aps.74.20250372
    [2] Juan Ting, Xing Jia-He, Zeng Fan-Cong, Zheng Xin, Xu Lin. Performance of perovskite solar cells based on SnO2:DPEPO hybrid electron transport layer. Acta Physica Sinica, 2024, 73(19): 198401. doi: 10.7498/aps.73.20240827
    [3] Zheng Ming, Yang Jian, Zhang Yi-Xiao, Guan Peng-Fei, Cheng Ao, Fan He-Liang. Energy storage and photoluminescence properties of Sm3+-doped 0.94Bi0.5Na0.5TiO3-0.06BaTiO3 multifunctional ceramics. Acta Physica Sinica, 2023, 72(17): 177801. doi: 10.7498/aps.72.20230685
    [4] Li Jia-Sen, Liang Chun-Jun, Ji Chao, Gong Hong-Kang, Song Qi, Zhang Hui-Min, Liu Ning. Improvement in performance of carbon-based perovskite solar cells by adding 1, 8-diiodooctane into hole transport layer 3-hexylthiophene. Acta Physica Sinica, 2021, 70(19): 198403. doi: 10.7498/aps.70.20210586
    [5] Chen Jia-Mei, Su Hang, Li Wan, Zhang Li-Lai, Suo Xin-Lei, Qin Jing, Zhu Kun, Li Guo-Long. Research progress of enhancing perovskite light emitting diodes with light extraction. Acta Physica Sinica, 2020, 69(21): 218501. doi: 10.7498/aps.69.20200755
    [6] Yang Zi-Xin, Gao Zhang-Ran, Sun Xiao-Fan, Cai Hong-Ling, Zhang Feng-Ming, Wu Xiao-Shan. High critical transition temperature of lead-based perovskite ferroelectric crystals: A machine learning study. Acta Physica Sinica, 2019, 68(21): 210502. doi: 10.7498/aps.68.20190942
    [7] Xia Jun-Min, Liang Chao, Xing Gui-Chuan. Inkjet printed perovskite solar cells: progress and prospects. Acta Physica Sinica, 2019, 68(15): 158807. doi: 10.7498/aps.68.20190302
    [8] Song Rui, Feng Kai, Lin Shang-Jin, He Man-Li, Tong Liang. First principles study of structural, electric, and magnetic properties of fluoride perovskite NaFeF3. Acta Physica Sinica, 2019, 68(14): 147101. doi: 10.7498/aps.68.20190573
    [9] Xiong Hui-Hui, Zhang Hui-Ning. First-principles investigation on partitioning behavior of rare earth elements between α-Fe and Fe3C. Acta Physica Sinica, 2016, 65(24): 248101. doi: 10.7498/aps.65.248101
    [10] Hou Yu-Hua, Huang You-Lin, Liu Zhong-Wu, Zeng De-Chang. Theoretical study on the influence of rare earth doping on the electronic structure and magnetic properties of cobalt ferrite. Acta Physica Sinica, 2015, 64(3): 037501. doi: 10.7498/aps.64.037501
    [11] Wu Di, Zhao Ji-Jun, Tian Hua. Effect of substitution Fe2+ on physical properties of MgSiO3 perovskite at high temperature and high pressure. Acta Physica Sinica, 2013, 62(4): 049101. doi: 10.7498/aps.62.049101
    [12] Li Hong-Lin, Zhang Zhong, Lü Ying-Bo, Huang Jin-Zhao, Zhang Ying, Liu Ru-Xi. First principles study on the electronic and optical properties of ZnO doped with rare earth. Acta Physica Sinica, 2013, 62(4): 047101. doi: 10.7498/aps.62.047101
    [13] Meng Zhen-Hua, Li Jun-Bin, Guo Yong-Quan, Wang Yi. Correlations between the valence electron structure and melt pointing and cohesive energies of rare earth metals. Acta Physica Sinica, 2012, 61(10): 107101. doi: 10.7498/aps.61.107101
    [14] Li Jie, Zhang Huai-Wu, Li Yuan-Xun, Li Qiang, Qin Jun-Feng. Study on the structural and magnetic properties of La-doped barium ferrites. Acta Physica Sinica, 2012, 61(22): 227501. doi: 10.7498/aps.61.227501
    [15] Li Xiu-Mei, Liu Tao, Guo Zhao-Hui, Zhu Ming-Gang, Li Wei. Effects of rare earth content on microstructure and magnetic properties of (Nd,Dy)-(Fe,Al)-B alloys. Acta Physica Sinica, 2008, 57(6): 3823-3827. doi: 10.7498/aps.57.3823
    [16] Liu Gui-Li, Li Rong-De. Ordering and interaction of Fe and RE atoms on grain boundaries in ZA27 alloys. Acta Physica Sinica, 2006, 55(2): 776-779. doi: 10.7498/aps.55.776
    [17] Liu Gui-Li. Electronic theoretical study on the influence of rare earth on the stress corrosion in magnesium alloy. Acta Physica Sinica, 2006, 55(12): 6570-6573. doi: 10.7498/aps.55.6570
    [18] Liu Gui-Li, Li Rong-De. Segregation and interaction of rare earth and iron elements on grain boundaries in ZA27 alloys. Acta Physica Sinica, 2004, 53(10): 3482-3486. doi: 10.7498/aps.53.3482
    [19] Xu Bei-Xue, Wu Jin-Lei, Shao Qing-Yi, Zhang Zhao-Xiang, Liu Wei-Min, Xue Zeng-Quan, Wu Quan-De. . Acta Physica Sinica, 2002, 51(5): 1103-1107. doi: 10.7498/aps.51.1103
    [20] XU BEI-XUE, WU JUN-LEI, LIU WEI-MIN, YANY HAI, SHAO QING-YI, LIU SHENG, XUE ZENG-QUAN, WU QUAN-DE. ENHANCED PHOTOEMISSION FROM METAL NANOPARTICLE COMPOSITE THIN FILMS (Ag-BaO) DOPED WITH RARE-EARTH ELEMENTS . Acta Physica Sinica, 2001, 50(5): 977-980. doi: 10.7498/aps.50.977
Metrics
  • Abstract views:  315
  • PDF Downloads:  5
  • Cited By: 0
Publishing process
  • Received Date:  01 March 2025
  • Accepted Date:  29 April 2025
  • Available Online:  10 May 2025
  • Published Online:  05 July 2025
  • /

    返回文章
    返回
    Baidu
    map