Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ultrafast Terahertz Scattering Scanning Near-field Optical Microscope

WANG Youwei MA Yihang WANG Jiayi WANG Ziquan RAO Xinyu DAI Mingcong HUANG Ziyu Wu Xiaojun

Citation:

Ultrafast Terahertz Scattering Scanning Near-field Optical Microscope

WANG Youwei, MA Yihang, WANG Jiayi, WANG Ziquan, RAO Xinyu, DAI Mingcong, HUANG Ziyu, Wu Xiaojun
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • Terahertz (THz) time-domain spectroscopy and imaging techniques at the nanoscale are imperative for materials research and devices detection, among others. However, conventional far-field THz time-domain spectroscopy faces inherent diffraction limits, restricting applications requiring femtosecond temporal resolution and nanoscale spatial precision for carrier dynamics analysis. We present a scattering-type scanning near-field optical microscopy that overcomes these constraints by combining ultrafast THz time-domain spectroscopy with AFM. The utilization of the near-field interaction between the needle's tip and the sample's surface has been demonstrated to facilitate the study of semiconductor materials and devices with static THz spectroscopy at a lateral spatial resolution of ~60 nm. This, in turn, enables the acquisition of static THz conductivity distributions of the semiconductor materials. Additionally, it facilitates the acquisition of transient conductivity distributions of semiconductor materials and laser THz emission ultrafast via photoexcited transient carrier kinetic processes. This aspect provides substantial support for the study of the performance of materials and devices in nanometer spatial resolution, ultrafast time resolution, and THz spectroscopic imaging.The experimental results show that the system has a signal-to-noise ratio as high as 56.34 dB in the static THz time-domain spectral mode, and can effectively extract the fifth-order harmonic signals covering the 0.2-2.2 THz frequency band with a spatial resolution of up to ~60 nm. Carrier excitation and complexation processes in topological insulators have been successfully observed by optical pump-THz probe with a time resolution better than 100 fs. Imaging of SRAM samples by the system reveals differences in THz scattering intensity due to non-uniformity in doping concentration, validating its potential for nanoscale defect detection.This study not only provides an innovative means for the study of nanoscale electrical characterization of semiconductor materials and devices, but also opens up new avenues for the application of THz technology in interdisciplinary subjects such as nanophotonics and spintronics. In the future, the temporal and spatial resolution and detection efficiency of the system are expected to be further improved by integrating the superlens technology, optimizing the probe design and introducing deep learning algorithms.
  • [1]

    Chen X L, Ma M W, Yang X M, Yang K, Ji T, Wu S W, Zhu Z Y 2008Acta Phys.-Chem. Sin. 24 1969(in Chinese) [陈西良,马明旺,杨小敏,杨康,吉特,吴胜伟,朱智勇2008物理化学学报24 1969]

    [2]

    Cocker T L, Jelic V, Hillenbrand R, Hegmann F 2021Nat. Photon. 15 558

    [3]

    Jepsen P U, Cooke D G, Koch M 2011Laser Photon. Rev. 5 124

    [4]

    Ulbricht R, Hendry E, Shan J, Heinz T F, Bonn M 2011Rev. Mod. Phys. 83 543

    [5]

    Kampfrath T, Tanaka K, Nelson, K A 2013Nat. Photon. 7 680

    [6]

    Lloyd-Hughes J 2005Phys. Rev. B 71 195301

    [7]

    Beard M C, Turner G M, Schmuttenmaer C A 2000Phys. Rev. B 62 15764

    [8]

    Xing X, Zhao L T, Zhang Z Y, Liu X K, Zhang K L, Yu Y, Lin X, Chen H Y, Chen J Q, Jin Z M, Xu J H, Ma G H 2017J. Phys. Chem. C 12120451

    [9]

    Knoll B, Keilmann F, Kramer A, Guckenberger R 1997Appl. Phys. Lett. 70 2667

    [10]

    Lahrech A, Bachelot R, Gleyzes P, Boccara A C 1996Opt. Lett. 211315

    [11]

    Knoll B, Keilmann F 1999Nature 399 134

    [12]

    van der Valk N C J, Planken P C M 2002Appl. Phys. Lett. 81 1558

    [13]

    Chen H T, Kersting R, Cho G C 2003Appl. Phys. Lett. 83 3009

    [14]

    Buersgens F, Kersting R, Chen H T 2006Appl. Phys. Lett. 88 112

    [15]

    Chen X Z, Liu X, Guo X D, Chen S, Hu H, Nikulina E, Ye X L, Yao Z H, Bechtel H A, Martin M C, Carr G L, Dai Q, Zhuang S L, Hu Q, Zhu Y M, Hillenbrand R, Liu M K, You G J 2020ACS Photonics 7 687

    [16]

    Plankl M, Faria P E Jr, Mooshammer F, Siday T, Zizlsperger M, Sandner F, Schiegl F, Maier S, Huber M A, Gmitra M, Fabian J, Boland J L, Cocker T L, Huber R 2021Nat. Photon. 15 594

    [17]

    Chen S, Leng P L, Konečná A, Modin E, Gutierrez-Amigo M, Vicentini E, Martín-García B, Barra-Burillo M, Niehues I, Maciel Escudero C, Xie X Y, Hueso L E, Artacho E, Aizpurua J, Errea I, Vergniory M G, Chuvilin A, Xiu F X, Hillenbrand R 2023Nat. Mater. 22 860

    [18]

    Cocker T L, Jelic V, Gupta M, Molesky S J, Burgess J A J, de los Reyes G, Titova L V, Tsui Y Y, Freeman M R, Hegmann F A 2013Nat. Photon. 7 620

    [19]

    Eisele M, Cocker T L, Huber M A, Plankl M, Viti L, Ercolani D, Sorba L, Vitiello M S, Huber R 2014Nat. Photon. 8 841

    [20]

    Wu X J, Kong D Y, Hao S B, Zeng Y S, Yu X Q, Zhang B L, Dai M C, Liu S J, Wang J Q, Ren Z J, Chen S, Sang J H, Wang K, Zhang D D, Liu Z K, Gui J Y, Yang X J, Xu Y, Leng Y X, Li Y T, Song L W, Tian Y, Li R X 2023Adv. Mater. 35 2208947

    [21]

    Jin Z M, Guo Y Y, Li B Y, Li Z S, Ma G H, Cao S X, Peng Y, Zhu Y M, Zhuang S L 2022Acta Photon. Sin. 51 0751410(in Chinese) [金钻明,郭颖钰,季秉煜,李章顺,马国宏,曹世勋,彭滟,朱亦鸣,庄松林2022光子学报 51 0751410]

    [22]

    Seifert T, Jaiswal S, Martens U, Hannegan J, Braun L, Maldonado P, Freimuth F, Kronenberg A, Henrizi J, Radu I, Beaurepaire E, Mokrousov Y, Oppeneer P M, Jourdan M, Jakob G, Turchinovich D, Hayden L M, Wolf M, Münzenberg M, Kläui M, Kampfrath T 2016Nat. Photon. 10 483

    [23]

    Kong D Y, Wu X J, Wang B, Nie T X, Xiao M, Pandey C, Gao Y, Wen L G, Zhao W S, Ruan C J, Miao J G, Li Y T, Wang L 2019Adv. Opt. Mater. 7 1900487

    [24]

    Wang B, Shan S Y, Wu X J, Wang C, Pandey C, Nie T X, Zhao W S, Li Y T, Miao J G, Wang L 2019Appl. Phys. Lett. 115 121104

    [25]

    Chen X H, Wang H T, Wang C, Ouyang C, Wei G S, Nie T X, Zhao W S, Miao J G, Li Y T, Wang L, Wu X J 2021Adv. Photonics Res. 2 2000099

    [26]

    Liu S J, Guo F W, Li P Y, Wei G S, Wang C, Chen X H, Wang B, Zhao W S, Miao J G, Wang L, Xu Y, Wu X J 2022Adv. Mater. Interfaces 9 2101296

    [27]

    Chen X H, Wang H T, Liu H J, Wang C, Wei G S, Fang C, Wang H C, Geng C Y, Liu S J, Li P Y, Yu H M, Zhao W S, Miao J G, Li Y T, Wang L, Nie T X, Zhao J M, Wu X J 2022Adv. Mater. 34 2106172

    [28]

    Liu S J, Lu C H, Fan Z Q, Wang S X, Li P Y, Chen X H, Pan J, Xu Y, Liu Y, Wu X J 2022Appl. Phys. Lett. 120 172404

    [29]

    Li P Y, Liu S J, Liu Z, Li M, Xu H, Xu Y, Zeng H P, Wu X J 2022Appl. Phys. Lett. 120 201102

    [30]

    Klarskov P, Kim H, Colvin V L,. Mittleman D M 2017ACS Photonics 4 2676

    [31]

    Pizzuto A, Ma P C, Mittleman D M 2023Light Sci. Appl. 12 96

    [32]

    Hillenbrand R, Abate Y, Liu M, Chen X, Basov D N 2025 Nat. Rev. Mater. 10 285

    [33]

    von Ribbeck H G, Brehm M, van der Weide D W, Winnerl S, Drachenko O, Helm M, Keilmann F 2008Opt. Express 16 3430

    [34]

    Siday T, Hale L L, Hermans R I, Mitrofanov O 2020ACS Photonics 7 596

    [35]

    Mastel S, Lundeberg M B, Alonso-González P, Gao Y, Watanabe K, Taniguchi T, Hone J, Koppens F H L, Nikitin A Y, Hillenbrand R 2017Nano Lett. 17 6526

    [36]

    Maissen C, Chen S, Nikulina E, Govyadinov A, Hillenbrand R 2019ACS Photonics 6 1279

    [37]

    Moon Y, Lee H, Lim J, Lee G, Kim J, Han H 2023AIP Adv. 13065211

    [38]

    Pistore V, Schiattarella C, Viti L, Siday T, Johnston M B, Mitrofanov O, Vitiello M S 2024 Appl. Phys. Lett. 124 221105

    [39]

    Cai J H, Dai M C, Chen S, Chen P, Wang J Q, Xiong H T, Ren Z J, Liu S J, Liu Z K, Wan C H, Bai M, Wu X J 2023Appl. Phys. Rev. 10 041414

    [40]

    Huang Z Y, Li J, Li P Y, Du L, Dai M C, Cai J H, Ren Z J, Nie T X, Wu X J 2025iScience 28 111840

    [41]

    Tanaka S, More S D, Murakami J, Itoh M, Fujii Y, Kamada M 2001Phys. Rev. B 64155308

    [42]

    Maeda N, Hata H, Osada N, Shen Q, Toyoda T, Kuwahara S, Katayama K 2013Phys. Chem. Chem. Phys. 15 11006

    [43]

    Shingai D, Ide Y, Sohn W Y, Katayama K 2018Phys. Chem. Chem. Phys. 20 3484

    [44]

    Astratov V N, Sahel Y B, Eldar Y C, Huang L, Ozcan A, Zheludev N, Zhao J, Burns Z, Liu Z, Narimanov E, Goswami N, Popescu G, Pfitzner E, Kukura P, Hsiao Y-T, Hsieh C-L, Abbey B, Diaspro A, LeGratiet A, Bianchini P, Shaked N T, Simon B, Verrier N, Debailleul M, Haeberlé O, Wang S, Liu M, Bai Y, Cheng J-X, Kariman B S, Fujita K, Sinvani M, Zalevsky Z, Li X, Huang G-J, Chu S-W, Tzang O, Hershkovitz D, Cheshnovsky O, Huttunen M J, Stanciu S G, Smolyaninova V N, Smolyaninov I I, Leonhardt U, Sahebdivan S, Wang Z, Luk'yanchuk B, Wu L, Maslov A V, Jin B, Simovski C R, Perrin S, Montgomery P, Lecler S 2023Laser & Photonics Rev. 17 2200029

    [45]

    Shenyang H, Chong W, Yuangang X, Boyang Y, Hugen Y 2023Photonics Insights 2 R03

    [46]

    Tao W H, Zhao S H, Dong H J, Zhang G F, Yang S M 2024Metro. Sci. Technol. 68 76(in Chinese) [陶伟灏,赵书浩,董涵瑾,张国锋,杨树明2024计量科学与技术68 76]

    [47]

    Park Y, Depeursinge C, Popescu G 2018Nat. Photon. 12 578

    [48]

    Paturzo M, Merola F, Grilli S, Nicola S D, Finizio A, Ferraro P 2008Opt. Express 16 17107

    [49]

    Jiaji L, Alex C M, Yunzhe L, Qian C, Chao Z, Lei T 2019Adv. Photon. 1 066004

    [50]

    Lü X, Röben B, Biermann K, Wubs J R, Macherius U, Weltmann K D, van Helden J H, Schrottke L, Grahn H T 2023 Semicond. Sci. Technol. 38 035003

    [51]

    Dean P, Valavanis A, Keeley J, Bertling K, Lim Y L, Alhathlool R, Burnett A D, Li L H, Khanna S P, Indjin D, Taimre T, Rakić A D, Linfield E H, Davies A G 2014J. Phys. D: Appl. Phys. 47 374008

    [52]

    Hübers H W, Eichholz R, Pavlov S G, Richter H 2013J. Infrared Milli. Terahz. Waves 34 325

  • [1] Zhang Yang, Zhang Zhi-Hao, Wang Yu-Jian, Xue Xiao-Lan, Chen Ling-Xiu, Shi Li-Wei. Polarization modulation scanning optical microscopy method. Acta Physica Sinica, doi: 10.7498/aps.73.20240688
    [2] Wang Xin, Wang Jun-Lin. Refractive index sensing characteristics of electromagnetic metamaterial absorber in terahertz band. Acta Physica Sinica, doi: 10.7498/aps.70.20201054
    [3] Cheng Zhe. Thermal science and engineering in third-generation semiconductor materials and devices. Acta Physica Sinica, doi: 10.7498/aps.70.20211662
    [4] Zhang Zhuo-Cheng, Wang Yue-Ying, Zhang Xiao-Qiu-Yan, Zhang Tian-Yu, Xu Xing-Xing, Zhao Tao, Gong Yu-Bin, Wei Yan-Yu, Hu Min. Tip-sample interactions in terahertz scattering scanning near-field optical microscopy and its influences. Acta Physica Sinica, doi: 10.7498/aps.70.20211715
    [5] Wang Mei-Chang, Yu Bin, Zhang Wei, Lin Dan-Ying, Qu Jun-Le. Digital line scanning fluorescence microscopy based on digital micromirror device. Acta Physica Sinica, doi: 10.7498/aps.69.20200908
    [6] Jiang Feng-Yi, Liu Jun-Lin, Zhang Jian-Li, Xu Long-Quan, Ding Jie, Wang Guang-Xu, Quan Zhi-Jue, Wu Xiao-Ming, Zhao Peng,  Liu Bi-Yu,  Li Dan, Wang Xiao-Lan, Zheng Chang-Da, Pan Shuan, Fang Fang, Mo Chun-Lan. Semiconductor yellow light-emitting diodes. Acta Physica Sinica, doi: 10.7498/aps.68.20191044
    [7] Wang Lei, Xiao Rui-Wen, Ge Shi-Jun, Shen Zhi-Xiong, Lü Peng, Hu Wei, Lu Yan-Qing. Research progress of terahertz liquid crystal materials and devices. Acta Physica Sinica, doi: 10.7498/aps.68.20182275
    [8] Gu Qiang-Qiang, Wan Si-Yuan, Yang Huan, Wen Hai-Hu. Studies of scanning tunneling spectroscopy on iron-based superconductors. Acta Physica Sinica, doi: 10.7498/aps.67.20181818
    [9] Yang Yun-Chang, Wu Bin, Liu Yun-Qi. Synthesis of bilayer graphene via chemical vapor deposition and its optoelectronic devices. Acta Physica Sinica, doi: 10.7498/aps.66.218101
    [10] Cao Xing-Zhong, Song Li-Gang, Jin Shuo-Xue, Zhang Ren-Gang, Wang Bao-Yi, Wei Long. Advances in applications of positron annihilation spectroscopy to investigating semiconductor microstructures. Acta Physica Sinica, doi: 10.7498/aps.66.027801
    [11] Chi Lang, Fei Hong-Tao, Wang Teng, Yi Jian-Peng, Fang Yue-Ting, Xia Rui-Dong. A highly sensitive chemosensor for solution based on organic semiconductor laser gain media. Acta Physica Sinica, doi: 10.7498/aps.65.064202
    [12] Li Jia-Ming, Tang Peng, Wang Jia-Jian, Huang Tao, Lin Feng, Fang Zhe-Yu, Zhu Xing. Focusing surface plasmon polaritons in archimedes' spiral nanostructure. Acta Physica Sinica, doi: 10.7498/aps.64.194201
    [13] Liu Hao, Xue Yu-Ming, Qiao Zai-Xiang, Li Wei, Zhang Chao, Yin Fu-Hong, Feng Shao-Jun. Progress of application research on Cu2ZnSnS4 thin film and its device. Acta Physica Sinica, doi: 10.7498/aps.64.068801
    [14] Dai Yu, Zhang Jian-Xun. Reduction of 1/f noise in semiconductor devices based on wavelet transform and Wiener filter. Acta Physica Sinica, doi: 10.7498/aps.60.110516
    [15] Wang Guo-Jun, Wu Shi-Fa, Li Xu-Feng, Li Rui, Duan Jian-Min, Pan Shi. Numerical simulation of the near-field distribution of light spot of aperture pyramid-type optical probe with a metal tip. Acta Physica Sinica, doi: 10.7498/aps.59.192
    [16] Chen Hua, Wang Li. Coherent transmission of terahertz wave through randomly packed subwavelength-sized aluminium particles. Acta Physica Sinica, doi: 10.7498/aps.58.8271
    [17] Li Zhi, Zhang Jia-Sen, Yang Jing, Gong Qi-Huang. Realization of femtosecond-resolved near-field optical system and its application. Acta Physica Sinica, doi: 10.7498/aps.56.3630
    [18] Xu Xing-Sheng, Xiong Zhi-Gang, Jin Ai-Zi, Chen Hong-Da, Zhang Dao-Zhong. Fabrication of photonic crystal on semiconductor materials by using focued ion-beam. Acta Physica Sinica, doi: 10.7498/aps.56.916
    [19] Liu Xue-Rong, Hu Bo, Liu Wen-Han, Gao Chen. The theoretical calibration coefficient in the measurement of nonlinear dielectric constant with a scanning tip microwave near-field microscopy. Acta Physica Sinica, doi: 10.7498/aps.52.34
    [20] WANG ZI-YANG, LI QIN, ZHAO JUN, GUO JI-HUA. STUDY OF THE DISTRIBUTION OF LIGHT INTENSITY OF THE FIBER PROBE OF TRANSMISSION SCANNING NEAR FIELD OPTICAL MICROSCOPY AND THE DISTRIBUTION OF EXCITED FLUORESCE NT MOLECULES. Acta Physica Sinica, doi: 10.7498/aps.49.1959
Metrics
  • Abstract views:  148
  • PDF Downloads:  2
  • Cited By: 0
Publishing process
  • Available Online:  13 May 2025

/

返回文章
返回
Baidu
map