Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Advances in applications of positron annihilation spectroscopy to investigating semiconductor microstructures

Cao Xing-Zhong Song Li-Gang Jin Shuo-Xue Zhang Ren-Gang Wang Bao-Yi Wei Long

Citation:

Advances in applications of positron annihilation spectroscopy to investigating semiconductor microstructures

Cao Xing-Zhong, Song Li-Gang, Jin Shuo-Xue, Zhang Ren-Gang, Wang Bao-Yi, Wei Long
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Positron annihilation spectroscopy has unique advantage for detecting the micro-defects and microstructures in materials,especially for investigating the negatively charged defects such as cation vacancies in semiconductors.It is a powerful tool to characterize the important features for vacancy-type defects localized electron states within the forbidden energy gap and cation vacancy which provides the key information about the type and distribution of microdefects. Positron annihilation lifetime and Doppler broadening spectroscopy are the major methods of analyzing the vacancy formation,evolution and distribution mechanism.Importantly,the slow positron beam technique can provide the dependences of surface,defect and interface microstructure information on depth distribution in semiconductor thin film.Vacancy and impurity elements can change the ambient electron density in material.They also induce the middle band,which will have dramatic effects on optical and electrical performance.And the variation of electron density will exert furtherinfluences on the positron-electron annihilation mechanism and process.For the fundamental experiments in semiconductors,fabrication technology,thermal treatment,ion implantation/doping,irradiation etc, positron annihilation spectroscopy technology has been extensively applied to detecting the detailed electron density and momentum distribution,and gained the information about microstructure and defects.It can guide the fundamental researches in experiment and give optimal design of the technology and properties about semiconductors.In principle, defect concentrations can be derived and an indication can be obtained about the nature of the defect.Results are presented showing that cation vacancies can be easily detected.Also charge states and defect levels in the band gap are accessible.By combining the positron annihilation spectroscopy with optical spectroscopies or other experimental methods,it is possible to give detailed identifications of the defects and their chemical surroundings.The positron annihilation spectroscopy technology is a very special and effective nuclear spectroscopy analysis method in studying semiconductor microstructure.In this review,the research progress in applications of positron annihilation spectroscopy technology to semiconductors is reported,which focuses on the experimental results from the Positron Research Platform located in Institute of High Energy Physics,Chinese Academy of Sciences.Under different growth modes and ways of treating semiconductors,the experimental results about the internal micro-defect formation mechanism of material, evolution mechanism,and defect feature research progress are reviewed Future challenges including the analysis of electropositivity vacancy (i.e.oxygen vacancy) and of multi-ion implantation phenomena are also presented new technologies such as digitization and new theory will make the positron annihilation spectroscopy portable and reliable.
      Corresponding author: Cao Xing-Zhong, caoxzh@ihep.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 0275076, 10575112, 60606011, 10835006, 11175191, 11475193, 11475197, 11575205, 11505192).
    [1]

    Cheng L J, Yeh C K 1973 Solid State Commun. 12 529

    [2]

    Arifov P U, Arutyunov N Y, Ilyasov A Z 1977 Sov. Phys. Semi.-Ussr 11 907

    [3]

    Zhang L H, Cheng B, Zhang J, Zhang L J, Guo W F, Liu J D, Zhang L N, Ye B J 2012 Sci. Sin.:Phys. Mech. Astron. 42 1217 (in Chinese)[张礼红, 成斌, 张杰, 张丽娟, 郭卫锋, 刘建党, 张礼楠, 叶邦角2012中国科学:物理学力学天文学42 1217]

    [4]

    Barbiellini B, Genoud P, Jarlborg T 1991 J. Phys.:Condens. Matter 3 7631

    [5]

    Yu W Z, Yuan J P 1999 Physics 28 429 (in Chinese)[郁伟中, 袁佳平1999物理28 429]

    [6]

    Share G H, Murphy R J, Skibo J G, Smith D M, Hudson H S, Lin R P, Shih A Y, Dennis B R, Schwartz R A, Kozlovsky B 2003 Astrophys. J. 595 85

    [7]

    Zhang Z M, Wang B Y, Ma C X, Zhou C L, Wei L, Zhang T B, Ren S X 2004 Nucl. Electron. Detect. Technol. 24 490 (in Chinese)[章志明, 王宝义, 马创新, 周春兰, 魏龙, 张天保, 任绍霞2004核电子学与探测技术24 490]

    [8]

    Cheng G D, Cao X Z, Wu J P, Wu H B, Yang J, Jiang X P, Yu R S, Wang B Y 2013 Mater. Rev. 27 133 (in Chinese)[成国栋, 曹兴忠, 吴建平, 伍海彪, 杨静, 姜小盼, 于润升, 王宝义2013材料导报27 133]

    [9]

    Zubiaga A, Garcia J A, Plazaola F, Tuomisto F, Zuniga-Perez J, Munoz-Sanjose V 2007 Phys. Rev. B 75 10

    [10]

    Arutyunov N Y, Elsayed M, Krause-Rehberg R, Emtsev V V, Oganesyan G A, Kozlovski V V 2013 J. Phys.:Condes. Matter 25 28

    [11]

    Kawasuso A, Yoshikawa M, Itoh H, Chiba T, Higuchi T, Betsuyaku K, Redmann F, Krause-Rehberg R 2005 Phys. Rev. B 72 6

    [12]

    Hu W G, Wang Z, Su B F, Dai Y Q, Wang S J, Zhao Y W 2004 Phys. Lett. A 332 286

    [13]

    Shao Y D, Wang Z, Dai Y Q, Zhao Y W, Tang F Y 2007 Mater. Lett. 61 1187

    [14]

    Suzuki R, Ohdaira T, Uedono A, Kobayashi Y 2002 Appl. Surf. Sci. 194 89

    [15]

    Cao X Z, Wang B Y, Zhang Z M, Wei C F, Zhang T B, Xue D S, Wei L 2004 Nucl. Sci. Tech. 27 435 (in Chinese)[曹兴忠, 王宝义, 章志明, 魏存峰, 张天保, 薛德胜, 魏龙2004核技术27 435]

    [16]

    Wang T M, Wang B Y, Chen H M, Yu R S, Wei L, Zhang T B, Yu W Z, He Y J 1999 Physics 28 573 (in Chinese)[王天民, 王宝义, 陈红民, 于润升, 魏龙, 张天保, 郁伟中, 何元金1999物理28 573]

    [17]

    Wang P, Cao X Z, Ma Y Y, Qin X B, Wang B Y, Ma C X, Wei L 2006 High Energ. Phys. Nucl. 30 1036 (in Chinese)[王平, 曹兴忠, 马雁云, 秦秀波, 王宝义, 马创新, 魏龙2006高能物理与核物理30 1036]

    [18]

    Ma Y Y, Pei S L, Zhang Z M, Cao X Z, Wang S H, Wang P, Wang B Y, Wei C F, Ma C X, Wei L 2006 High Energ. Phys. Nucl. 30 166 (in Chinese)[马雁云, 裴士伦, 章志明, 曹兴忠, 王书鸿, 王平, 王宝义, 魏存峰, 马创新, 魏龙2006高能物理与核物理30 166]

    [19]

    Cao X Z, Wang B Y, Yu R S, Wei C F, Xue D S, Wei L 2004 High Energ. Phys. Nucl. 28 560 (in Chinese)[曹兴忠, 王宝义, 于润升, 魏存峰, 薛德胜, 魏龙2004高能物理与核物理28 560]

    [20]

    Cao X Z, Wang B Y, Wang P, Ma Y Y, Qin X B, Wei L 2006 High Energ. Phys. Nucl. 30 1196 (in Chinese)[曹兴忠, 王宝义, 王平, 马雁云, 秦秀波, 魏龙2006高能物理与核物理30 1196]

    [21]

    Wang B Y, Cao X Z, Wei C F, Zhang Z M, Ma C X, Zhang T B, Wei L 2007 Nucl. Sci. Tech. 30 247(in Chinese)[王宝义, 曹兴忠, 魏存峰, 章志明, 马创新, 张天保, 魏龙2007核技术30 247]

    [22]

    Wei C F, Wang B Y, Wang P, Cao X Z, Zhang Z M, Ma Y Y, Xue D S, Wei L 2006 High Energ. Phys. Nucl. 30 1010 (in Chinese)[魏存峰, 王宝义, 王平, 曹兴忠, 章志明, 马雁云, 薛德胜, 魏龙2006高能物理与核物理30 1010]

    [23]

    Hu Y C, Cao X Z, Li Y X, Zhang P, Jin S X, Lu E Y, Yu R S, Wei L, Wang B Y 2015 Acta Phys. Sin. 64 247804 (in Chinese)[胡远超, 曹兴忠, 李玉晓, 张鹏, 靳硕学, 卢二阳, 于润升, 魏龙, 王宝义2015 64 247804]

    [24]

    Alivisatos A P 1996 J. Phys. Chem. 100 13226

    [25]

    Morkoc H, Strite S, Gao G B, Lin M E, Sverdlov B, Burns M 1994 J. Appl. Phys. 76 1363

    [26]

    Liu X W, Zhou K B, Wang L, Wang B Y, Li Y D 2009 J. Am. Chem. Soc. 131 3140

    [27]

    Khalid M, Ziese M, Setzer A, Esquinazi P, Lorenz M, Hochmuth H, Grundmann M, Spemann D, Butz T, Brauer G, Anwand W, Fischer G, Adeagbo W A, Hergert W, Ernst A 2009 Phys. Rev. B 80 035331

    [28]

    Ma Z W, Liu L X, Xie Y Z, Su Y R, Zhao H T, Wang B Y, Cao X Z, Qin X B, Li J, Yang Y H, Xie E Q 2011 Thin Solid Films 519 6349

    [29]

    Wan D Y, Wang B Y, Zhou C L, Ma C X, Wang Y T, Zhang R G, Wei L 2004 Phys. B:Condens. Matter 344 489

    [30]

    Yu Y B, Zhao J J, Han X, Zhang Y, Qin X B, Wang B Y 2013 Chin. J. Catal. 34 283

    [31]

    Hao W C, Pan F, Wang T M, Zhou C L, Wei L 2006 Chin. Phys. Lett. 23 223

    [32]

    Tripathi B, Singh F, Avasthi D K, Bhati A K, Das D, Vijay Y K 2008 J. Alloys Compd. 454 97

    [33]

    Wang X Q, Liu S T, Ma D Y, Zheng X T, Chen G, Xu F J, Tang N, Shen B, Zhang P, Cao X Z, Wang B Y, Huang S, Chen K J, Zhou S Q, Yoshikawa A 2012 Appl. Phys. Lett. 101 171905

    [34]

    Yang X L, Zhu W X, Wang C D, Fang H, Yu T J, Yang Z J, Zhang G Y, Qin X B, Yu R S, Wang B Y 2009 Appl. Phys. Lett. 94 151907

    [35]

    Pasang T, Namratha K, Guagliardo P, Byrappa K, Ranganathaiah C, Samarin S, Williams J F 2015 Mater. Res. Express 2 045502

    [36]

    Liang L H, Li Z X, Wang B Y, Wu W M 2011 J. Guangxi Univ. (Nat. Sci. Ed.) 36 863(in Chinese)[梁立欢, 李卓昕, 王宝义, 吴伟明2011广西大学学报:自然科学版36 863]

    [37]

    Padma N, Maheshwari P, Bhattacharya D, Tokas R B, Sen S, Honda Y, Basu S, Pujari P K, Rao T V 2016 ACS Appl. Mater. Inter. 8 3376

    [38]

    Hao X P, Wang B Y, Yu R S, Wei L, Wang H, Zhao D G, Hao W C 2008 Chin. Phys. Lett. 25 1034

    [39]

    Li D X, Qin X B, Zheng L R, Li Y X, Cao X Z, Li Z X, Yang J, Wang B Y 2013 Chin. Phys. B 22 037504

    [40]

    Zhan P, Wang W P, Liu C, Hu Y, Li Z C, Zhang Z J, Zhang P, Wang B Y, Cao X Z 2012 J. Appl. Phys. 111 033501

    [41]

    Jia Y, Oshima T, Yamada A, Konagai M, Takahashi K, Tanigawa S, Wei L 1993 Jpn. J. Appl. Phys. Part 1-Regular Papers Short Notes & Review Papers 32 1884

    [42]

    Ren H T, Xiang G, Gu G X, Zhang X, Wang W J, Zhang P, Wang B Y, Cao X Z 2012 J. Nanomater. 202 1

    [43]

    Lee J L, Wei L, Tanigawa S, Kawabe M 1991 Appl. Phys. Lett. 58 1524

    [44]

    Yang A L, Song H P, Liang D C, Wei H Y, Liu X L, Jin P, Qin X B, Yang S Y, Zhu Q S, Wang Z G 2010 Appl. Phys. Lett. 96 151904

    [45]

    Li Z X, Wang D N, Wang B Y, Xue D S, Wei L, Qin X B 2010 Acta Phys. Sin. 59 8915 (in Chinese)[李卓昕, 王丹妮, 王宝义, 薛德胜, 魏龙, 秦秀波2010 59 8915]

    [46]

    Sedivy L, Cizek J, Belas E, Grill R, Melikhova O 2016 Sci. Rep. 6 20641

    [47]

    Ning S, Zhan P, Wang W P, Li Z C, Zhang Z J 2014 Chin. Phys. B 23 127503

    [48]

    Liu X F, Iqbal J, Gong W M, Yang S L, Gao R S, Zeng F, Yu R H, He B, Hao Y P, Hao X P 2009 J. Appl. Phys. 105 093931

    [49]

    Zhao C J, Liu Y, Zhang J Y, Sun L, Ding L, Zhang P, Wang B Y, Cao X Z, Yu G H 2012 Appl. Phys. Lett. 101 072404

    [50]

    Zhao C J, Ding L, Zhao Z D, Zhang P, Cao X Z, Wang B Y, Zhang J Y, Yu G H 2013 Appl. Phys. A 116 845

    [51]

    Maheshwari P, Dutta D, Mukherjee S, Madhu P K, Mote K R, Pujari P K 2016 Phys. Chem. Chem. Phys. 18 12886

    [52]

    Marchiori C F N, Yamamoto N A D, Matos C F, Kujala J, Macedo A G, Tuomisto F, Zarbin A J G, Koehler M, Roman L S 2015 Appl. Phys. Lett. 106 133301

    [53]

    Yu R S, Maekawa M, Kawasuso A, Wang B Y, Wei L 2012 Nucl. Instrum. Methods Phys. Res., Sect. B 270 47

    [54]

    Qin X B, Zhang P, Liang L H, Zhao B Z, Yu R S, Wang B Y, Wu W M 2011 J. Phys. Conf. Ser. 262 012051

    [55]

    Wei L, Tanigawa S, Uedono A, Wada K, Nakanishi H 1994 Jpn. J. Appl. Phys. Part 1-Regular Papers Brief Communications & Review Papers 33 33

    [56]

    Hu X J, Shen Y G, Hao X P, Wang B Y 2009 Diamond Relat. Mater. 18 210

    [57]

    Zhang B, Zhang P, Wang J, Zhu F, Cao X Z, Wang B Y, Liu C L 2013 Nucl. Phys. Rev. 30 471

    [58]

    Xu N N, Li G P, Wang Y B, Zhong H P, Li T J, Gong H F, Wang B Y, Li Z X 2012 Nucl. Sci. Tech. 35 98 (in Chinese)[许楠楠, 李公平, 王云波, 钟火平, 李天晶, 龚恒凤, 王宝义, 李卓昕2012核技术35 98]

    [59]

    Liu Y, Wang G, Wang S C, Yang J H, Chen L, Qin X Q, Song B, Wang B Y, Chen X L 2011 Phys. Rev. Lett. 106 087205

    [60]

    Zhang M L, Yang R X, Li Z X, Cao X Z, Wang B Y, Wang X H 2013 Acta Phys. Sin. 62 017103 (in Chinese)[张明兰, 杨瑞霞, 李卓昕, 曹兴忠, 王宝义, 王晓晖2013 62 017103]

    [61]

    Pan S, Mandal A, Roychowdhury A, Gupta S 2015 Appl. Phys. A 120 221

    [62]

    Blakie D E, Zalloum O H Y, Wojcik J, Irving E A, Knights A P, Mascher P, Simpson P J 2009 J. Appl. Phys. 105 053517

    [63]

    Zhang L J, Wang T, Li J, Hao Y P, Liu J D, Zhang P, Cheng B, Zhang Z W, Wang B Y, Ye B J 2012 Thin Solid Films 525 68

    [64]

    Onuma T, Chichibu S F, Uedono A, Yoo Y Z, Chikyow T, Sota T, Kawasaki M, Koinuma H 2004 Appl. Phys. Lett. 85 5586

    [65]

    Tuomisto F, Kuittinen T, Zając M, Doradziński R, Wasik D 2014 J. Cryst. Growth 403 114

    [66]

    Elsayed M, Krause-Rehberg R, Korff B, Ratschinski I, Leipner H S 2013 Eur. Phys. J. B 86 358

    [67]

    Hao X P, Yu R S, Wang B Y, Chen H L, Wang D N, Ma C X, Wei L 2007 Appl. Surf. Sci. 253 6868

    [68]

    Uedono A, Tanigawa S, Ogura A, Ono H, Suzuki R, Ohdaira T, Mikado T 2000 J. Appl. Phys. 87 1659

    [69]

    Kar S, Biswas S, Chaudhuri S, Nambissan P M G 2005 Phys. Rev. B 72 075338

    [70]

    Wei L, Tabuki Y, Tanigawa S 1993 Jpn. J. Appl. Phys. Part 1-Regular Papers Short Notes & Review Papers 32 7

    [71]

    Liu Z M, Yi Y, Li J H, Woo S I, Wang B Y, Cao X Z, Li Z X 2013 Chem. Commun. 49 7726

    [72]

    He C Z, She X D, Peng Z, Zhong J P, Liao S Q, Gong W, Liao J H, Kong L X 2015 Phys. Chem. Chem. Phys. 17 12175

    [73]

    Ma C X, Zhou C L, Qin X B, Wang B Y, Wei L, Kui R X, Qian H J, Su R, Zhong J 2004 Nucl. Sci. Tech. 27 943 (in Chinese)[马创新, 周春兰, 秦秀波, 王宝义, 魏龙, 奎热西, 钱海杰, 苏润, 钟俊2004核技术27 943]

  • [1]

    Cheng L J, Yeh C K 1973 Solid State Commun. 12 529

    [2]

    Arifov P U, Arutyunov N Y, Ilyasov A Z 1977 Sov. Phys. Semi.-Ussr 11 907

    [3]

    Zhang L H, Cheng B, Zhang J, Zhang L J, Guo W F, Liu J D, Zhang L N, Ye B J 2012 Sci. Sin.:Phys. Mech. Astron. 42 1217 (in Chinese)[张礼红, 成斌, 张杰, 张丽娟, 郭卫锋, 刘建党, 张礼楠, 叶邦角2012中国科学:物理学力学天文学42 1217]

    [4]

    Barbiellini B, Genoud P, Jarlborg T 1991 J. Phys.:Condens. Matter 3 7631

    [5]

    Yu W Z, Yuan J P 1999 Physics 28 429 (in Chinese)[郁伟中, 袁佳平1999物理28 429]

    [6]

    Share G H, Murphy R J, Skibo J G, Smith D M, Hudson H S, Lin R P, Shih A Y, Dennis B R, Schwartz R A, Kozlovsky B 2003 Astrophys. J. 595 85

    [7]

    Zhang Z M, Wang B Y, Ma C X, Zhou C L, Wei L, Zhang T B, Ren S X 2004 Nucl. Electron. Detect. Technol. 24 490 (in Chinese)[章志明, 王宝义, 马创新, 周春兰, 魏龙, 张天保, 任绍霞2004核电子学与探测技术24 490]

    [8]

    Cheng G D, Cao X Z, Wu J P, Wu H B, Yang J, Jiang X P, Yu R S, Wang B Y 2013 Mater. Rev. 27 133 (in Chinese)[成国栋, 曹兴忠, 吴建平, 伍海彪, 杨静, 姜小盼, 于润升, 王宝义2013材料导报27 133]

    [9]

    Zubiaga A, Garcia J A, Plazaola F, Tuomisto F, Zuniga-Perez J, Munoz-Sanjose V 2007 Phys. Rev. B 75 10

    [10]

    Arutyunov N Y, Elsayed M, Krause-Rehberg R, Emtsev V V, Oganesyan G A, Kozlovski V V 2013 J. Phys.:Condes. Matter 25 28

    [11]

    Kawasuso A, Yoshikawa M, Itoh H, Chiba T, Higuchi T, Betsuyaku K, Redmann F, Krause-Rehberg R 2005 Phys. Rev. B 72 6

    [12]

    Hu W G, Wang Z, Su B F, Dai Y Q, Wang S J, Zhao Y W 2004 Phys. Lett. A 332 286

    [13]

    Shao Y D, Wang Z, Dai Y Q, Zhao Y W, Tang F Y 2007 Mater. Lett. 61 1187

    [14]

    Suzuki R, Ohdaira T, Uedono A, Kobayashi Y 2002 Appl. Surf. Sci. 194 89

    [15]

    Cao X Z, Wang B Y, Zhang Z M, Wei C F, Zhang T B, Xue D S, Wei L 2004 Nucl. Sci. Tech. 27 435 (in Chinese)[曹兴忠, 王宝义, 章志明, 魏存峰, 张天保, 薛德胜, 魏龙2004核技术27 435]

    [16]

    Wang T M, Wang B Y, Chen H M, Yu R S, Wei L, Zhang T B, Yu W Z, He Y J 1999 Physics 28 573 (in Chinese)[王天民, 王宝义, 陈红民, 于润升, 魏龙, 张天保, 郁伟中, 何元金1999物理28 573]

    [17]

    Wang P, Cao X Z, Ma Y Y, Qin X B, Wang B Y, Ma C X, Wei L 2006 High Energ. Phys. Nucl. 30 1036 (in Chinese)[王平, 曹兴忠, 马雁云, 秦秀波, 王宝义, 马创新, 魏龙2006高能物理与核物理30 1036]

    [18]

    Ma Y Y, Pei S L, Zhang Z M, Cao X Z, Wang S H, Wang P, Wang B Y, Wei C F, Ma C X, Wei L 2006 High Energ. Phys. Nucl. 30 166 (in Chinese)[马雁云, 裴士伦, 章志明, 曹兴忠, 王书鸿, 王平, 王宝义, 魏存峰, 马创新, 魏龙2006高能物理与核物理30 166]

    [19]

    Cao X Z, Wang B Y, Yu R S, Wei C F, Xue D S, Wei L 2004 High Energ. Phys. Nucl. 28 560 (in Chinese)[曹兴忠, 王宝义, 于润升, 魏存峰, 薛德胜, 魏龙2004高能物理与核物理28 560]

    [20]

    Cao X Z, Wang B Y, Wang P, Ma Y Y, Qin X B, Wei L 2006 High Energ. Phys. Nucl. 30 1196 (in Chinese)[曹兴忠, 王宝义, 王平, 马雁云, 秦秀波, 魏龙2006高能物理与核物理30 1196]

    [21]

    Wang B Y, Cao X Z, Wei C F, Zhang Z M, Ma C X, Zhang T B, Wei L 2007 Nucl. Sci. Tech. 30 247(in Chinese)[王宝义, 曹兴忠, 魏存峰, 章志明, 马创新, 张天保, 魏龙2007核技术30 247]

    [22]

    Wei C F, Wang B Y, Wang P, Cao X Z, Zhang Z M, Ma Y Y, Xue D S, Wei L 2006 High Energ. Phys. Nucl. 30 1010 (in Chinese)[魏存峰, 王宝义, 王平, 曹兴忠, 章志明, 马雁云, 薛德胜, 魏龙2006高能物理与核物理30 1010]

    [23]

    Hu Y C, Cao X Z, Li Y X, Zhang P, Jin S X, Lu E Y, Yu R S, Wei L, Wang B Y 2015 Acta Phys. Sin. 64 247804 (in Chinese)[胡远超, 曹兴忠, 李玉晓, 张鹏, 靳硕学, 卢二阳, 于润升, 魏龙, 王宝义2015 64 247804]

    [24]

    Alivisatos A P 1996 J. Phys. Chem. 100 13226

    [25]

    Morkoc H, Strite S, Gao G B, Lin M E, Sverdlov B, Burns M 1994 J. Appl. Phys. 76 1363

    [26]

    Liu X W, Zhou K B, Wang L, Wang B Y, Li Y D 2009 J. Am. Chem. Soc. 131 3140

    [27]

    Khalid M, Ziese M, Setzer A, Esquinazi P, Lorenz M, Hochmuth H, Grundmann M, Spemann D, Butz T, Brauer G, Anwand W, Fischer G, Adeagbo W A, Hergert W, Ernst A 2009 Phys. Rev. B 80 035331

    [28]

    Ma Z W, Liu L X, Xie Y Z, Su Y R, Zhao H T, Wang B Y, Cao X Z, Qin X B, Li J, Yang Y H, Xie E Q 2011 Thin Solid Films 519 6349

    [29]

    Wan D Y, Wang B Y, Zhou C L, Ma C X, Wang Y T, Zhang R G, Wei L 2004 Phys. B:Condens. Matter 344 489

    [30]

    Yu Y B, Zhao J J, Han X, Zhang Y, Qin X B, Wang B Y 2013 Chin. J. Catal. 34 283

    [31]

    Hao W C, Pan F, Wang T M, Zhou C L, Wei L 2006 Chin. Phys. Lett. 23 223

    [32]

    Tripathi B, Singh F, Avasthi D K, Bhati A K, Das D, Vijay Y K 2008 J. Alloys Compd. 454 97

    [33]

    Wang X Q, Liu S T, Ma D Y, Zheng X T, Chen G, Xu F J, Tang N, Shen B, Zhang P, Cao X Z, Wang B Y, Huang S, Chen K J, Zhou S Q, Yoshikawa A 2012 Appl. Phys. Lett. 101 171905

    [34]

    Yang X L, Zhu W X, Wang C D, Fang H, Yu T J, Yang Z J, Zhang G Y, Qin X B, Yu R S, Wang B Y 2009 Appl. Phys. Lett. 94 151907

    [35]

    Pasang T, Namratha K, Guagliardo P, Byrappa K, Ranganathaiah C, Samarin S, Williams J F 2015 Mater. Res. Express 2 045502

    [36]

    Liang L H, Li Z X, Wang B Y, Wu W M 2011 J. Guangxi Univ. (Nat. Sci. Ed.) 36 863(in Chinese)[梁立欢, 李卓昕, 王宝义, 吴伟明2011广西大学学报:自然科学版36 863]

    [37]

    Padma N, Maheshwari P, Bhattacharya D, Tokas R B, Sen S, Honda Y, Basu S, Pujari P K, Rao T V 2016 ACS Appl. Mater. Inter. 8 3376

    [38]

    Hao X P, Wang B Y, Yu R S, Wei L, Wang H, Zhao D G, Hao W C 2008 Chin. Phys. Lett. 25 1034

    [39]

    Li D X, Qin X B, Zheng L R, Li Y X, Cao X Z, Li Z X, Yang J, Wang B Y 2013 Chin. Phys. B 22 037504

    [40]

    Zhan P, Wang W P, Liu C, Hu Y, Li Z C, Zhang Z J, Zhang P, Wang B Y, Cao X Z 2012 J. Appl. Phys. 111 033501

    [41]

    Jia Y, Oshima T, Yamada A, Konagai M, Takahashi K, Tanigawa S, Wei L 1993 Jpn. J. Appl. Phys. Part 1-Regular Papers Short Notes & Review Papers 32 1884

    [42]

    Ren H T, Xiang G, Gu G X, Zhang X, Wang W J, Zhang P, Wang B Y, Cao X Z 2012 J. Nanomater. 202 1

    [43]

    Lee J L, Wei L, Tanigawa S, Kawabe M 1991 Appl. Phys. Lett. 58 1524

    [44]

    Yang A L, Song H P, Liang D C, Wei H Y, Liu X L, Jin P, Qin X B, Yang S Y, Zhu Q S, Wang Z G 2010 Appl. Phys. Lett. 96 151904

    [45]

    Li Z X, Wang D N, Wang B Y, Xue D S, Wei L, Qin X B 2010 Acta Phys. Sin. 59 8915 (in Chinese)[李卓昕, 王丹妮, 王宝义, 薛德胜, 魏龙, 秦秀波2010 59 8915]

    [46]

    Sedivy L, Cizek J, Belas E, Grill R, Melikhova O 2016 Sci. Rep. 6 20641

    [47]

    Ning S, Zhan P, Wang W P, Li Z C, Zhang Z J 2014 Chin. Phys. B 23 127503

    [48]

    Liu X F, Iqbal J, Gong W M, Yang S L, Gao R S, Zeng F, Yu R H, He B, Hao Y P, Hao X P 2009 J. Appl. Phys. 105 093931

    [49]

    Zhao C J, Liu Y, Zhang J Y, Sun L, Ding L, Zhang P, Wang B Y, Cao X Z, Yu G H 2012 Appl. Phys. Lett. 101 072404

    [50]

    Zhao C J, Ding L, Zhao Z D, Zhang P, Cao X Z, Wang B Y, Zhang J Y, Yu G H 2013 Appl. Phys. A 116 845

    [51]

    Maheshwari P, Dutta D, Mukherjee S, Madhu P K, Mote K R, Pujari P K 2016 Phys. Chem. Chem. Phys. 18 12886

    [52]

    Marchiori C F N, Yamamoto N A D, Matos C F, Kujala J, Macedo A G, Tuomisto F, Zarbin A J G, Koehler M, Roman L S 2015 Appl. Phys. Lett. 106 133301

    [53]

    Yu R S, Maekawa M, Kawasuso A, Wang B Y, Wei L 2012 Nucl. Instrum. Methods Phys. Res., Sect. B 270 47

    [54]

    Qin X B, Zhang P, Liang L H, Zhao B Z, Yu R S, Wang B Y, Wu W M 2011 J. Phys. Conf. Ser. 262 012051

    [55]

    Wei L, Tanigawa S, Uedono A, Wada K, Nakanishi H 1994 Jpn. J. Appl. Phys. Part 1-Regular Papers Brief Communications & Review Papers 33 33

    [56]

    Hu X J, Shen Y G, Hao X P, Wang B Y 2009 Diamond Relat. Mater. 18 210

    [57]

    Zhang B, Zhang P, Wang J, Zhu F, Cao X Z, Wang B Y, Liu C L 2013 Nucl. Phys. Rev. 30 471

    [58]

    Xu N N, Li G P, Wang Y B, Zhong H P, Li T J, Gong H F, Wang B Y, Li Z X 2012 Nucl. Sci. Tech. 35 98 (in Chinese)[许楠楠, 李公平, 王云波, 钟火平, 李天晶, 龚恒凤, 王宝义, 李卓昕2012核技术35 98]

    [59]

    Liu Y, Wang G, Wang S C, Yang J H, Chen L, Qin X Q, Song B, Wang B Y, Chen X L 2011 Phys. Rev. Lett. 106 087205

    [60]

    Zhang M L, Yang R X, Li Z X, Cao X Z, Wang B Y, Wang X H 2013 Acta Phys. Sin. 62 017103 (in Chinese)[张明兰, 杨瑞霞, 李卓昕, 曹兴忠, 王宝义, 王晓晖2013 62 017103]

    [61]

    Pan S, Mandal A, Roychowdhury A, Gupta S 2015 Appl. Phys. A 120 221

    [62]

    Blakie D E, Zalloum O H Y, Wojcik J, Irving E A, Knights A P, Mascher P, Simpson P J 2009 J. Appl. Phys. 105 053517

    [63]

    Zhang L J, Wang T, Li J, Hao Y P, Liu J D, Zhang P, Cheng B, Zhang Z W, Wang B Y, Ye B J 2012 Thin Solid Films 525 68

    [64]

    Onuma T, Chichibu S F, Uedono A, Yoo Y Z, Chikyow T, Sota T, Kawasaki M, Koinuma H 2004 Appl. Phys. Lett. 85 5586

    [65]

    Tuomisto F, Kuittinen T, Zając M, Doradziński R, Wasik D 2014 J. Cryst. Growth 403 114

    [66]

    Elsayed M, Krause-Rehberg R, Korff B, Ratschinski I, Leipner H S 2013 Eur. Phys. J. B 86 358

    [67]

    Hao X P, Yu R S, Wang B Y, Chen H L, Wang D N, Ma C X, Wei L 2007 Appl. Surf. Sci. 253 6868

    [68]

    Uedono A, Tanigawa S, Ogura A, Ono H, Suzuki R, Ohdaira T, Mikado T 2000 J. Appl. Phys. 87 1659

    [69]

    Kar S, Biswas S, Chaudhuri S, Nambissan P M G 2005 Phys. Rev. B 72 075338

    [70]

    Wei L, Tabuki Y, Tanigawa S 1993 Jpn. J. Appl. Phys. Part 1-Regular Papers Short Notes & Review Papers 32 7

    [71]

    Liu Z M, Yi Y, Li J H, Woo S I, Wang B Y, Cao X Z, Li Z X 2013 Chem. Commun. 49 7726

    [72]

    He C Z, She X D, Peng Z, Zhong J P, Liao S Q, Gong W, Liao J H, Kong L X 2015 Phys. Chem. Chem. Phys. 17 12175

    [73]

    Ma C X, Zhou C L, Qin X B, Wang B Y, Wei L, Kui R X, Qian H J, Su R, Zhong J 2004 Nucl. Sci. Tech. 27 943 (in Chinese)[马创新, 周春兰, 秦秀波, 王宝义, 魏龙, 奎热西, 钱海杰, 苏润, 钟俊2004核技术27 943]

  • [1] Liu Yu, He Xi-Ping, He Sheng-Ping. Ultrasonic scattering model and identification experiment of polycrystalline materials. Acta Physica Sinica, 2024, 73(3): 034302. doi: 10.7498/aps.73.20231578
    [2] Li Yong-Jun, Han Yong-Sen, Zhang Wen-Jiang-Qi, Guo Wen-Min, Sun Yun-Long, Li Zhong-Hua. Influence of assisted electric field on the microstructure evolution and direct current electrical properties of low-density polyethylene. Acta Physica Sinica, 2024, 73(22): 227702. doi: 10.7498/aps.73.20241113
    [3] Li Chong-Yang, Zhao Bin, Zhang Jun-Wei. Chemical quenching of positronium in OMC/SBA-15, OMC@SBA-15 and CuO@SBA-15 catalysts. Acta Physica Sinica, 2022, 71(6): 067805. doi: 10.7498/aps.71.20211814
    [4] He Wei-Di, Zhang Pei-Yuan, Liu Xiang, Tian Xue-Fen, Fu Xin-Ge, Deng Ai-Hong. Defects in H/He neutral beam irradiated potassium doped tungsten alloy by positron annihilation technique. Acta Physica Sinica, 2021, 70(16): 167803. doi: 10.7498/aps.70.20210438
    [5] Zhu Te, Cao Xing-Zhong. Research progress of hydrogen/helium effects in metal materials by positron annihilation spectroscopy. Acta Physica Sinica, 2020, 69(17): 177801. doi: 10.7498/aps.69.20200724
    [6] Zhang Pei-Yuan, Deng Ai-Hong, Tian Xue-Fen, Tang Jun. Study of defects in potassium-doped tungsten alloy by positron annihilation technique. Acta Physica Sinica, 2020, 69(9): 096103. doi: 10.7498/aps.69.20191792
    [7] Li Zhe-Fu, Jia Yan-Yan, Liu Ren-Duo, Xu Yu-Hai, Wang Guang-Hong, Xia Xiao-Bin, Shen Wei-Zu. Effect of proton irradiation on microstructure evolution of permanent magnet. Acta Physica Sinica, 2018, 67(1): 016104. doi: 10.7498/aps.67.20172025
    [8] Li Li-Li, Zhang Xiao-Hong, Wang Yu-Long, Guo Jia-Hui, Zhang Shuang. Simulation of mechanical properties based on microstructure in polyethylene/montmorillonite nanocomposites. Acta Physica Sinica, 2016, 65(19): 196202. doi: 10.7498/aps.65.196202
    [9] Li Jie, Gao Jin, Wan Fa-Rong. The change of microstructure in deuteron-implanted aluminum under electron irradiation. Acta Physica Sinica, 2016, 65(2): 026102. doi: 10.7498/aps.65.026102
    [10] Duan Fang-Li, Wang Ming, Liu Jing. Microstructure changes of amorphous polymer film induced by friction. Acta Physica Sinica, 2015, 64(6): 066801. doi: 10.7498/aps.64.066801
    [11] Cai Jie, Ji Le, Yang Sheng-Zhi, Zhang Zai-Qiang, Liu Shi-Chao, Li Yan, Wang Xiao-Tong, Guan Qing-Feng. Surface microstructure and stress characteristics in pure zirconium after high current pulsed electron beam irradiation. Acta Physica Sinica, 2013, 62(15): 156106. doi: 10.7498/aps.62.156106
    [12] Li Yan, Cai Jie, Lü Peng, Zou Yang, Wan Ming-Zhen, Peng Dong-Jin, Gu Qian-Qian, Guan Qing-Feng. Surface microstructure and stress characteristics in pure titanium after high-current pulsed electron beam irradiation. Acta Physica Sinica, 2012, 61(5): 056105. doi: 10.7498/aps.61.056105
    [13] Jia Quan-Jie, Chen Yu, Tian Xue-Yan, Yao Jiang-Feng, Zhao Su-Ling, Fan Xing, Gong Wei, Xu Zheng, Zhang Fu-Jun. Crystallization and microstructure change of semiconductor active thin layer in polymer organic field-effect transistors. Acta Physica Sinica, 2011, 60(2): 027201. doi: 10.7498/aps.60.027201
    [14] Fan Xian-Hong, Chen Bo, Guan Qing-Feng. The influence of proton irradiation on the microstructure of pure Al films. Acta Physica Sinica, 2008, 57(3): 1829-1833. doi: 10.7498/aps.57.1829
    [15] Yang Hai-Bo, Hu Ming, Zhang Wei, Zhang Xu-Rui, Li De-Jun, Wang Ming-Xia. Nanoindentation investigation of the hardness and Young’s modulus of porous silicon depending on microstructure. Acta Physica Sinica, 2007, 56(7): 4032-4038. doi: 10.7498/aps.56.4032
    [16] Xu Xing-Sheng, Xiong Zhi-Gang, Jin Ai-Zi, Chen Hong-Da, Zhang Dao-Zhong. Fabrication of photonic crystal on semiconductor materials by using focued ion-beam. Acta Physica Sinica, 2007, 56(2): 916-921. doi: 10.7498/aps.56.916
    [17] Feng Wen-Ran, Yan Dian-Ran, He Ji-Ning, Chen Guang-Liang, Gu Wei-Chao, Zhang Gu-Ling, Liu Chi-Zi, Yang Si-Ze. Hardness and microstructure of the nanocrystallined TiN coating by reactive plasma spray. Acta Physica Sinica, 2005, 54(5): 2399-2402. doi: 10.7498/aps.54.2399
    [18] Guan Qing-Feng, An Chun-Xiang, Qin Ying, Zou Jian-Xin, Hao Sheng-Zhi, Zhang Qing-Yu, Dong Chuang, Zou Guang-Tian. Microstructure induced by stress generated by high-current pulsed electron beam. Acta Physica Sinica, 2005, 54(8): 3927-3934. doi: 10.7498/aps.54.3927
    [19] Pan Meng-Xiao, Cao Xing-Zhong, Li Yang-Xian, Wang Bao-Yi, Xue De-Sheng, Ma Chuang-Xin, Zhou Chun-Lan, Wei Long. Microstructural features of DC sputtered vanadium oxide thin films. Acta Physica Sinica, 2004, 53(6): 1956-1960. doi: 10.7498/aps.53.1956
    [20] Zhu Jun, Wang Li-Li, Ma Li, Wang Shao-Jie. Solid state diffusion of NaCl into NaY zeolite studied by positron annihilation. Acta Physica Sinica, 2003, 52(11): 2929-2933. doi: 10.7498/aps.52.2929
Metrics
  • Abstract views:  8906
  • PDF Downloads:  627
  • Cited By: 0
Publishing process
  • Received Date:  30 August 2016
  • Accepted Date:  18 October 2016
  • Published Online:  20 January 2017

/

返回文章
返回
Baidu
map