-
The discovery of superconductivity in infinite-layer nickelate Nd0.8Sr0.2NiO2 has established another type of unconventional superconductors, whose structure and electron pairing mechanism are similar to those of cuprate superconductors. Unlike cuprate superconductors, superconductivity in infinite-layer nickelates has only been observed in thin film samples, wherein heterointerface structures, elemental doping, and the infinite-layer configuration are critical for epitaxial systems. Therefore, the film-substrate interfacial effects require exploration for understanding superconductivity. However, comparative studies on the interfacial structures between superconducting and nonsuperconducting Nd0.8Sr0.2NiOx nickelate thin films have not been reported in the literature.
This work focuses on Nd0.8Sr0.2NiO3/SrTiO3 and Nd0.8Sr0.2NiO2/SrTiO3 and utilizes scanning transmission electron microscopy (STEM) to conduct a detailed characterization of the phase distribution and interfacial structural variation in the superconducting and non-superconducting nickelate thin films. Further analysis of the corresponding atomic HAADF、 iDPC images and EDS maps reveals the phenomena such as elements mixing, atomic steps, and changes in lattice parameters at the interfaces. These results also show that in the Nd0.8Sr0.2NiO2 film, the first 1-2 unit cells near the interface have not been fully reduced to the superconducting infinite-layer structure. Such findings contribute to alleviating the strong polarity discontinuity at the sharp interface.
This study emphasizes the atomic reconstruction and the modulation effect at the interface between the substrate and the film, enriching the understanding of the structural properties of the Nd0.8Sr0.2NiOx films, and providing crucial experimental evidence for understanding the interfacial structure of infinite-layer nickelates. -
[1] Gu Q Q, Li Y Y, Wan S Y, Li H Z, Guo W, Yang H, Li Q, Zhu X Y, Pan X Q, Nie Y F, Wen H H 2020 Nat. Commun. 11 6027
[2] Hepting M, Li D, Jia C J, Lu H, Paris E, Tseng Y, Feng X, Osada M, Been E, Hikita Y, Chuang Y D, Hussain Z, Zhou K J, Nag A, Garcia Fernandez M, Rossi M, Huang H Y, Huang D J, Shen Z X, Schmitt T, Hwang H Y, Moritz B, Zaanen J, Devereaux T P, Lee W S 2020 Nat. Mater. 19 381
[3] Goodge B H, Geisler B, Lee K, Osada M, Wang B Y, Li D F, Hwang H Y, Pentcheva R, Kourkoutis L F 2023 Nat. Mater. 22 466
[4] Anisimov V I, Bukhvalov D, Rice T M 1999 Phys. Rev. B 59 7901
[5] Crespin M, Levitz P, Gatineau L 1983 J. Chem. Soc., Faraday Trans. 2 79 1181
[6] Hayward M A, Green M A, Rosseinsky M J, Sloan J 1999 J. Am. Chem. Soc. 121 8843
[7] Li D F, Lee K, Wang B Y, Osada M, Crossley S, Lee H R, Cui Y, Hikita Y, Hwang H Y 2019 Nature 572 624
[8] Li D F, Wang B Y, Lee K, Harvey S P, Osada M, Goodge B H, Kourkoutis L F, Hwang H Y 2020 Phys. Rev. Lett. 125 027001
[9] Puphal P, Wu Y M, Fürsich K, Lee H, Pakdaman M, Bruin J A N, Nuss J, Suyolcu Y E, van Aken P A, Keimer B, Isobe M, Hepting M 2021 Sci. Adv. 7 eabl8091
[10] Parzyck C T, Gupta N K, Wu Y, Anil V, Bhatt L, Bouliane M, Gong R, Gregory B Z, Luo A, Sutarto R, He F, Chuang Y D, Zhou T, Herranz G, Kourkoutis L F, Singer A, Schlom D G, Hawthorn D G, Shen K M 2024 Nat. Mater. 23 486
[11] Li Q, He C P, Si J, Zhu X Y, Zhang Y, Wen H H 2020 Commun. Mater. 1 16
[12] Wang B X, Zheng H, Krivyakina E, Chmaissem O, Lopes P P, Lynn J W, Gallington L C, Ren Y, Rosenkranz S, Mitchell J F 2020 Phys. Rev. Mater. 4 084409
[13] Lee Y, Wei X, Yu Y J, Bhatt L, Lee K, Goodge B H, Harvey S P, Wang B Y, Muller D A, Kourkoutis L F, Lee W S, Raghu S, Hwang H Y 2025 Nat. Synth.
[14] Sun H L, Huo M W, Hu X W, Li J Y, Liu Z J, Han Y F, Tang L Y, Mao Z Q, Yang P T, Wang B S 2023 Nature 621 493
[15] Ko E K, Yu Y J, Liu Y D, Bhatt L, Li J R, Thampy V, Kuo C T, Wang B Y, Lee Y, Lee K, Lee J, Goodge B H, Muller D A, Hwang H Y 2025 Nature 638 935
[16] Zhou G D, Lv W, Wang H, Nie Z H, Chen Y Q, Li Y Y, Huang H L, Chen W Q, Sun Y J, Xue Q K 2025 Nature 640 641
[17] Bernardini F, Olevano V, Blase X, Cano A 2020 JPhys Mater. 3 035003
[18] Geisler B, Pentcheva R 2020 Phys. Rev. B 102 020502
[19] Zeng S W, Tang C S, Yin X M, Li C J, Li M S, Huang Z, Hu J X, Liu W, Omar G J, Jani H, Lim Z S, Han K, Wan D y, Yang P, Pennycook S J, Wee A T S, Ariando A 2020 Phys. Rev. Lett. 125 147003
[20] Lee K, Goodge B H, Li D F, Osada M, Wang B Y, Cui Y, Kourkoutis L F, Hwang H Y 2020 APL Mater. 8 041107
[21] Tokuda Y, Kobayashi S, Ohnishi T, Mizoguchi T, Shibata N, Ikuhara Y, Yamamoto T 2011 Appl. Phys. Lett. 99 033110
[22] Bak J, Bae H B, Kim J, Oh J, Chung S Y 2017 Nano Lett. 17 3126
[23] Goodge B H, Li D F, Lee K, Osada M, Wang B Y, Sawatzky G A, Hwang H Y, Kourkoutis L F 2021 Proc. Natl. Acad. Sci. U.S.A. 118 e2007683118
[24] Reyren N, Thiel S, Caviglia A D, Kourkoutis L F, Hammerl G, Richter C, Schneider C W, Kopp T, Rüetschi A S, Jaccard D, Gabay M, Muller D A, Triscone J M, Mannhart J 2007 Science 317 1196
Metrics
- Abstract views: 18
- PDF Downloads: 0
- Cited By: 0