Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Characterization of secular motion and excess micromotion in a Liquid Nitrogen-Cooled Ca+ Ion Optical Clock

MA Zixiao ZHANG Baolin HUANG Yao GAO Kelin GUAN Hua

Citation:

Characterization of secular motion and excess micromotion in a Liquid Nitrogen-Cooled Ca+ Ion Optical Clock

MA Zixiao, ZHANG Baolin, HUANG Yao, GAO Kelin, GUAN Hua
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • In ion optical clock systems, the motional effects of trapped ions are critical factors in determining clock performance and currently represent key limitations in achieving lower uncertainty across different ion-based optical clocks. Building on the first liquid nitrogen-cooled Ca$^+$ ion optical clock [PhysRevApplied.17.034041], we have developed a new physical system for a second Ca$^+$ ion optical clock and made significant improvements to its ion trapping apparatus. These improvements primarily focus on two aspects: First, we designed and implemented an active stabilization system for the RF voltage, which stabilizes the induced RF signal on the compensation electrodes by adjusting the RF source amplitude in real time. This approach effectively suppressed long-term drifts in the radial secular motion frequencies to less than 1 kHz, achieving stabilized values of $\omega_x = 2\pi \times 3.522(2)\,\mathrm{MHz}$ and $\omega_y = 2\pi \times 3.386(2)\,\mathrm{MHz}$. The induced RF signal was stabilized at 59 121.43(12) µV, demonstrating the high precision of the stabilization system. Second, we optimized the application of compensation voltages by integrating the vertical compensation electrodes directly onto the ion trap structure. This refinement enabled us to suppress excess micromotion in all three mutually orthogonal directions to an even lower level. With the RF trapping frequency tuned close to the magic trapping condition of the clock transition, we further evaluated the excess micromotion-induced frequency shift in the optical clock to be $2(1) \times 10^{-19}$. To quantitatively assess the secular motion of the trapped ion, we performed sideband spectroscopy on the radial and axial motional modes, measuring both red and blue sidebands. From these measurements, we accurately determined the mean phonon number in the three motional modes after Doppler cooling, corresponding to an average ion temperature of $0.78(39)\,\mathrm{mK}$, which is close to the Doppler cooling limit. The corresponding second-order Doppler shift was evaluated to be $-(2.71 \pm 1.36) \times 10^{-18}$. The long-term stability of the radial secular motion frequency provides favorable conditions for implementing three-dimensional sideband cooling in future experiments, which will further reduce the second-order Doppler shift. These advancements not only enhance the overall stability of the optical clock but also lay the foundation for reducing its systematic uncertainty to the $10^{-19}$ level.
  • [1]

    Chen J 2009 Chinese Science Bulletin 54 348

    [2]

    Dimarcq N, Gertsvolf M, Mileti G, Bize S, Oates C W, Peik E, Calonico D, Ido T, Tavella P, Meynadier F, Petit G, Panfilo G, Bartholomew J, Defraigne P, Donley E A, Hedekvist P O, Sesia I, Wouters M, Dubé P, Fang F, Levi F, Lodewyck J, Margolis H S, Newell D, Slyusarev S, Weyers S, Uzan J P, Yasuda M, Yu D H, Rieck C, Schnatz H, Hanado Y, Fujieda M, Pottie P E, Hanssen J, Malimon A, Ashby N 2024 Metrologia 61 012001

    [3]

    Riehle F, Gill P, Arias F, Robertsson L 2018 Metrologia 55 188

    [4]

    Gill P 2016 Journal of Physics: Conference Series 723 012053

    [5]

    Takano T, Takamoto M, Ushijima I, Ohmae N, Akatsuka T, Yamaguchi A, Kuroishi Y, Munekane H, Miyahara B, Katori H 2016 Nature Photonics 10 662

    [6]

    Schuldt T, Gohlke M, Oswald M, Wüst J, Blomberg T, Döringshoff K, Bawamia A, Wicht A, Lezius M, Voss K, Krutzik M, Herrmann S, Kovalchuk E, Peters A, Braxmaier C 2021 GPS Solutions 25 83

    [7]

    Takamoto M, Ushijima I, Ohmae N, Yahagi T, Kokado K, Shinkai H, Katori H 2020 Nature Photonics 14 411

    [8]

    Sanner C, Huntemann N, Lange R, Tamm C, Peik E, Safronova M S, Porsev S G 2019 Nature 567 204

    [9]

    Mehlstäubler T E, Grosche G, Lisdat C, Schmidt P O, Denker H 2018 Reports on Progress in Physics 81 064401

    [10]

    Gilmore K A, Affolter M, Lewis-Swan R J, Barberena D, Jordan E, Rey A M, Bollinger J J 2021 Science 373 673

    [11]

    Huntemann N, Lipphardt B, Tamm C, Gerginov V, Weyers S, Peik E 2014 Phys. Rev. Lett. 113 210802

    [12]

    Chou C W, Hume D B, Rosenband T, Wineland D J 2010 Science 329 1630

    [13]

    Filzinger M, Dörscher S, Lange R, Klose J, Steinel M, Benkler E, Peik E, Lisdat C, Huntemann N 2023 Phys. Rev. Lett. 130 253001

    [14]

    Kolkowitz S, Pikovski I, Langellier N, Lukin M D, Walsworth R L, Ye J 2016 Phys. Rev. D 94 124043

    [15]

    McGrew W F, Zhang X, Fasano R J, Schäffer S A, Beloy K, Nicolodi D, Brown R C, Hinkley N, Milani G, Schioppo M, Yoon T H, Ludlow A D 2018 Nature 564 87

    [16]

    Aeppli A, Kim K, Warfield W, Safronova M S, Ye J 2024 Phys. Rev. Lett. 133 023401

    [17]

    Ma Z Y, Deng K, Wang Z Y, Wei W Z, Hao P, Zhang H X, Pang L R, Wang B, Wu F F, Liu H L, Yuan W H, Chang J L, Zhang J X, Wu Q Y, Zhang J, Lu Z H 2024 Phys. Rev. Appl. 21 044017

    [18]

    Li J, Cui X Y, Jia Z P, Kong D Q, Yu H W, Zhu X Q, Liu X Y, Wang D Z, Zhang X, Huang X Y, Zhu M Y, Yang Y M, Hu Y, Liu X P, Zhai X M, Liu P, Jiang X, Xu P, Dai H N, Chen Y A, Pan J W 2024 Metrologia 61 015006

    [19]

    Ushijima I, Takamoto M, Das M, Ohkubo T, Katori H 2015 Nature Photonics 9 185

    [20]

    Brewer S M, Chen J S, Hankin A M, Clements E R, Chou C W, Wineland D J, Hume D B, Leibrandt D R 2019 Phys. Rev. Lett. 123 033201

    [21]

    Huang Y, Zhang B, Zeng M, Hao Y, Ma Z, Zhang H, Guan H, Chen Z, Wang M, Gao K 2022 Phys. Rev. Appl. 17 034041

    [22]

    Tofful A, Baynham C F A, Curtis E A, Parsons A O, Robertson B I, Schioppo M, Tunesi J, Margolis H S, Hendricks R J, Whale J, Thompson R C, Godun R M 2024 Metrologia 61 045001

    [23]

    Lu B K, Sun Z, Yang T, Lin Y G, Wang Q, Li Y, Meng F, Lin B K, Li T C, Fang Z J 2022 Chinese Physics Letters 39 080601

    [24]

    Zhiqiang Z, Arnold K J, Kaewuam R, Barrett M D 2023 Science Advances 9 eadg1971

    [25]

    Lu X, Guo F, Wang Y, Xu Q, Zhou C, Xia J, Wu W, Chang H 2023 Metrologia 60 015008

    [26]

    Arnold K J, Kaewuam R, Roy A, Tan T R, Barrett M D 2018 Nature Communications 9 1650

    [27]

    Dubé P, Madej A A, Tibbo M, Bernard J E 2014 Phys. Rev. Lett. 112 173002

    [28]

    Huang Y, Guan H, Zeng M, Tang L, Gao K 2019 Phys. Rev. A 99 011401

    [29]

    Porsev S G, Derevianko A 2006 Phys. Rev. A 74 020502

    [30]

    Angstmann E J, Dzuba V A, Flambaum V V 2006 Phys. Rev. Lett. 97 040802

    [31]

    Zeng M, Huang Y, Zhang B, Hao Y, Ma Z, Hu R, Zhang H, Chen Z, Wang M, Guan H, Gao K 2023 Phys. Rev. Appl. 19 064004

    [32]

    Bothwell T, Kedar D, Oelker E, Robinson J M, Bromley S L, Tew W L, Ye J, Kennedy C J 2019 Metrologia 56 065004

    [33]

    Doležal M, Balling P, Nisbet-Jones P B R, King S A, Jones J M, Klein H A, Gill P, Lindvall T, Wallin A E, Merimaa M, Tamm C, Sanner C, Huntemann N, Scharnhorst N, Leroux I D, Schmidt P O, Burgermeister T, Mehlstäubler T E, Peik E 2015 Metrologia 52 842

    [34]

    Zeng M, Huang Y, Zhang B, Ma Z, Hao Y, Hu R, Zhang H, Guan H, Gao K 2023 Chinese Physics B 32 113701

    [35]

    Berkeland D J, Miller J D, Bergquist J C, Itano W M, Wineland D J 1998 Journal of Applied Physics 83 5025

    [36]

    Chen J S, Brewer S M, Chou C W, Wineland D J, Leibrandt D R, Hume D B 2017 Phys. Rev. Lett. 118 053002

    [37]

    Keller J, Partner H L, Burgermeister T, Mehlstäubler T E 2015 Journal of Applied Physics 118 104501

    [38]

    Wineland D J, Monroe C, Itano W M, Leibfried D, King B E, Meekhof D M 1998 Journal of research of the National Institute of Standards and Technology 103 259

    [39]

    James D F V 1998 Applied Physics B 66 181

    [40]

    Zhang B, Huang Y, Hao Y, Zhang H, Zeng M, Guan H, Gao K 2020 Journal of Applied Physics 128 143105

    [41]

    Zhang B, Huang Y, Zhang H, Hao Y, Zeng M, Guan H, Gao K 2020 Chinese Physics B 29 074209

    [42]

    Dubé P, Madej A A, Zhou Z, Bernard J E 2013 Phys. Rev. A 87 023806

    [43]

    Huntemann N, Sanner C, Lipphardt B, Tamm C, Peik E 2016 Phys. Rev. Lett. 116 063001

    [44]

    Chou C W, Hume D B, Koelemeij J C J, Wineland D J, Rosenband T 2010 Phys. Rev. Lett. 104 070802

  • [1] Chen Si, Zhang Hai-Yang, Jin Fa-Hong, Wang Lin, Zhao Chang-Ming. Research on multi-dimensional micro-motion feature extraction of moving targets. Acta Physica Sinica, doi: 10.7498/aps.73.20231691
    [2] Huang Yuan-Zhi, Yang Chuan-Hao, He Song-Ping, Ma Rui-Song, Huan Qing. Advances in dry low-temperature scanning probe microscopy system development. Acta Physica Sinica, doi: 10.7498/aps.73.20241367
    [3] Zhang Hong-Shuo, Zhou Yong-Zhuang, Shen Yong, Zou Hong-Xin. Simulation of Coulomb crystal structure and motion trajectory of calcium ions in linear ion trap. Acta Physica Sinica, doi: 10.7498/aps.72.20221674
    [4] Li Gui-Hua, Zhang Meng-Ya, Ma Hui, Tian Yue, Jiao An-Xin, Zheng Lin-Qi, Wang Chang, Chen Ming, Liu Xiang-Dong, Li Shuang, Cui Qing-Qiang, Li Guan-Hua. Low temperature-promoted surface plasmon resonance effect and ultrasensitive surface-enhanced Raman scattering detection of creatinine. Acta Physica Sinica, doi: 10.7498/aps.71.20220151
    [5] Qin Lu, Ren Jie, Xu Xing-Sheng. Optoelectronic properties of vertical-cavity surface-emitting laser at low temperature. Acta Physica Sinica, doi: 10.7498/aps.68.20190427
    [6] Wei Meng-Ju, Chen Li, Wu Tao, Zhang Hong-Yan, Cui Hai-Hang. Mechanism of the motion of spherical microparticle induced by a collapsed microbubble. Acta Physica Sinica, doi: 10.7498/aps.66.164702
    [7] Ding Kun, Wu Xue-Fei, Dou Xiu-Ming, Sun Bao-Quan. In situ tuning hydrostatic pressure at low temperature using electrically driven diamond anvil cell. Acta Physica Sinica, doi: 10.7498/aps.65.037701
    [8] Cao Shan, Liu Jiang-Ping, Li Jun, Wang Kai, Lin Wei, Lei Hai-Le. Infrared absorption characteristics of solid nitrogen at near-triple point temperatures. Acta Physica Sinica, doi: 10.7498/aps.64.073301
    [9] Yang Zhi-Qiang, Wu Zhen-Sen, Zhang Geng, Gong Lei. Recognition technology for obtaining micro-motion characteristics of rotating rough targets. Acta Physica Sinica, doi: 10.7498/aps.63.210301
    [10] Li Ming-Jie, Gao Hong, Li Jiang-Lu, Wen Jing, Li Kai, Zhang Wei-Guang. Electrical properties of single ZnO nanobelt in low temperature. Acta Physica Sinica, doi: 10.7498/aps.62.187302
    [11] He Yong-Zhou, Zhou Qiao-Gen. Magnetic properties of permanent magnet for cryogenic undulator of permanent Shanghai synchrotron radiation facility. Acta Physica Sinica, doi: 10.7498/aps.62.044106
    [12] Zhang Ming-kun, Chen Shuo, Shang Zhi. Numerical simulation of a droplet motion in a grooved microchannel. Acta Physica Sinica, doi: 10.7498/aps.61.034701
    [13] Wang Shao-Liang, Li Liang, Ouyang Zhong-Wen, Xia Zheng-Cai, Xia Nian-Ming, Peng Tao, Zhang Kai-Bo. Development of high-magnetic-field, high-frequency electronic spin resonance system. Acta Physica Sinica, doi: 10.7498/aps.61.107601
    [14] Liu Tian-Yuan, Sun Cheng-Lin, Li Zuo-Wei, Zhou Mi. Raman spectroscopy study on the C/H interaction between benzene and chloroform. Acta Physica Sinica, doi: 10.7498/aps.61.107801
    [15] Hu Yi, Ge Yun, Zhang Dong, Zheng Hai-Rong, Gong Xiu-Fen. Microbubble displacement under ultrasonic chirp excitation. Acta Physica Sinica, doi: 10.7498/aps.58.4746
    [16] Ding Cai-Ying, Tan Lei, Liu Li-Wei, Xu Yan. Light forces on moving atom in micro-cavity. Acta Physica Sinica, doi: 10.7498/aps.57.5612
    [17] Li Xu-Jie, Nie Qiu-Hua, Dai Shi-Xun, Xu Tie-Feng, Shen Xiang, Zhang Xiang-Hua. Low temperature emission characteristics of an ytterbium sensitized erbium-doped tellurite glass. Acta Physica Sinica, doi: 10.7498/aps.57.3001
    [18] Xu Geng-Zhao, Liang Hu, Bai Yong-Qiang, Lau Kei-May, Zhu Xing. Study of temperature dependent electroluminescence of InGaN/GaN multiple quantum wells using low temperature scanning near-field optical microscopy. Acta Physica Sinica, doi: 10.7498/aps.54.5344
    [19] ZHANG TING-QING, LIU CHUAN-YANG, LIU JIA-LU, WANG JIAN-PING, HUANG ZHI, XU NA-JUN, HE BAO-PING, PENG HONG-LUN, YAO YU-JUAN. RADIATION EFFECTS OF MOS DEVICE AT LOW DOSE RATE AND LOW TEMPERATURE. Acta Physica Sinica, doi: 10.7498/aps.50.2434
    [20] TAU YUNG. THE FERROMAGNETIC AND ANTIFERROMAGNETIC KINEMATIC INTERACTIONS AT LOW TEMPERATURE. Acta Physica Sinica, doi: 10.7498/aps.22.449
Metrics
  • Abstract views:  176
  • PDF Downloads:  10
  • Cited By: 0
Publishing process
  • Available Online:  27 February 2025

/

返回文章
返回
Baidu
map