搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

带凹槽的微通道中液滴运动数值模拟

张明焜 陈硕 尚智

引用本文:
Citation:

带凹槽的微通道中液滴运动数值模拟

张明焜, 陈硕, 尚智

Numerical simulation of a droplet motion in a grooved microchannel

Zhang Ming-kun, Chen Shuo, Shang Zhi
PDF
导出引用
  • 运用改进的耗散粒子动力学方法模拟了液滴在由凹槽所构成的粗糙表面微通道内的运动行为.改进的耗散粒子动力学方法采用新近提出的一种短程排斥、长程吸引相互作用势能函数,从而可以模拟带有自由面的流体,如液滴等.模拟了新势能函数下液滴与固体壁面的静态接触角,并用2次多项式拟合了接触角-awf/af变化曲线.研究了液滴在带凹槽的微通道中运动时,微通道壁面浸润性、外场力、液滴温度对液滴流动特性的影响.研究表明壁面浸润性和外场力对液滴流动特性的影响较大,液滴温度对液滴流动特性的影响较小.研究结果对运用耗散粒子动力学方法模拟并分析微流体在复杂微通道的流动有一定的参考价值.
    In this paperan improved dissipative particle dynamics(DPD) method was applied to simulate droplet motion in a grooved microchannel. The improved DPD method adopted a recently proposed combination of short-range repulsive and long-range attractive interaction, which can simulate fluid flows with free surfaces, such as droplet motions. The static contact angle between the droplet and the solid wall was simulated with the new potential function, andstatic contactangle~awf/af curve was obtained by Polynomial fit of the 2nd order. The influences ofwall wettability, flow field force, droplet temperature on the flow pattern of droplet in the grooved microchannel were investigated. The results showed that wall wettability and flow field force have large affectson the flow pattern of the droplet, whiledroplet temperature have little affectson it. This article is helpful to understand the fluid flow behavior with free surfaces on rough surfaces.
    • 基金项目: 国家自然科学基金(批准号: 10872152)和上海市教委科研创新重点项目资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 10872152) and the Innovation Program of Shanghai Municipal Education Commission, China (Grant No. 09ZZ34).
    [1]

    Yun K S, Cho I J, Bu J U, Kim C J, Yoon E 2002 J. Microelectromech.Sys. 11 454

    [2]

    Gordillo J M, Cheng Z D, Ganan-Calvo A M, Marquez M, WeitzD A 2004 Phys. Fluids 16 2828

    [3]

    Lang W P, Yang J L, Chen Y J, Li C 2004 Phys. Chem. of TheNew Century:Frontier and Prospects (Beijing: Science Press) (in Chinese) [梁文平, 杨俊林, 陈拥军, 李灿 2004 新世纪的物理化学: 学科前沿与展望 (北京: 科学出版社)

    [4]

    De Gans B J, Schubert U S 2003 Macromolecular Rapid Communications24 659

    [5]

    Karniadakis G E, Beskok A 2002 Micro Flows: Fundamentals andSimulation (New York: Springer)

    [6]

    Alexander F J, Garcia A L 1997 Comput. Phys. 11 588

    [7]

    Cao L X, Wang C Y 2007 Acta Phys. Sin. 56 413 (in Chinese) [曹莉霞, 王崇愚 2007 56 413]

    [8]

    Lim C Y, Shu C, Niu X D, Chew Y T 2002 Phys. Fluids 14 2299

    [9]

    Hoogerbrugge P J, Koelman JMV A 1992 Europhys. Lett. 19 155

    [10]

    Liu M B, Meakin P, Huang H 2007 Phys. Fluids 19 033302

    [11]

    Liu M B, Meakin P, Huang H 2007 J. Computation. Phys. 222110

    [12]

    Liu M B, Chang J Z, Liu H T 2010 The 2nd International Conferenceon Computer and Automation Engineering, Singapore Feb.26–28 2010 p334

    [13]

    Cheng Y T, Rodak D E 2005 Appl. Phys. Lett. 86 144101

    [14]

    Mchale G, Shirtcliffe N J, Aqil S, Perry C C, Newton M I 2004Phys. Rev. Lett. 93 036102

    [15]

    Huang J J, Shu C, Chew Y T, Zheng H W 2007 Int. J. ModernPhys. C 18 492

    [16]

    Huang J, Shu C, Chew Y T 2009 Phys. Fluids 21 022103

    [17]

    Shi Z Y, Hu G H, Zhou Z W 2010 Acta Phys. Sin. 59 2595 (in Chinese) [石自媛, 胡国辉, 周哲纬 2010 59 2595]

    [18]

    Liu M B, Meakin P, Huang H S 2006 Phys. Fluids 18 017101

    [19]

    Espanol P, Serrano M, Zuniga I 1997 Int. J. Modern Phys. C 8899

    [20]

    Espanol P, Warren P 1995 Europhys. Lett. 30 191

    [21]

    Huilgol R R, Phan-Thien N 1997 Fluid Mechanics of Viscoelasticity:General Principles, Constitutive Modeling, Analytical AndNumerical Technique (Amsterdam: Elsevier)

    [22]

    Fan X J, Phan-Thien N, Ng T Y, Wu X H, Xu D 2003 Phys. Fluids15 11

    [23]

    Novik K E, Coveney P V 2000 Phys. Rev. E 61 435

    [24]

    Chen S, Phan-Thien N, Fan X J, Khoo B C 2004 J. Non-NewtonianFluid Mech. 118 65

    [25]

    Liu M B, Liu G R, Lam K Y 2003 J. Computation. Appl. Math.55 263

    [26]

    Chang J Z, Liu M B, Liu H T 2008 Acta Phys. Sin. 57 3954 (in Chinese) [常建忠, 留谋斌, 刘汉涛 2008 57 3954]

    [27]

    Wang X L, Chen S 2010 Acta Phys. Sin. 59 6778 (in Chinese) [王晓亮, 陈硕 2010 59 6778]

    [28]

    Kong B, Yang X Z 2006 Langmuir 22 2065

    [29]

    Liu J 2008 Thermal Micro-System Technology (Beijing: SciencePress) (in Chinese) [刘静 2008 热学微系统技术 (北京: 科学出版社)]

  • [1]

    Yun K S, Cho I J, Bu J U, Kim C J, Yoon E 2002 J. Microelectromech.Sys. 11 454

    [2]

    Gordillo J M, Cheng Z D, Ganan-Calvo A M, Marquez M, WeitzD A 2004 Phys. Fluids 16 2828

    [3]

    Lang W P, Yang J L, Chen Y J, Li C 2004 Phys. Chem. of TheNew Century:Frontier and Prospects (Beijing: Science Press) (in Chinese) [梁文平, 杨俊林, 陈拥军, 李灿 2004 新世纪的物理化学: 学科前沿与展望 (北京: 科学出版社)

    [4]

    De Gans B J, Schubert U S 2003 Macromolecular Rapid Communications24 659

    [5]

    Karniadakis G E, Beskok A 2002 Micro Flows: Fundamentals andSimulation (New York: Springer)

    [6]

    Alexander F J, Garcia A L 1997 Comput. Phys. 11 588

    [7]

    Cao L X, Wang C Y 2007 Acta Phys. Sin. 56 413 (in Chinese) [曹莉霞, 王崇愚 2007 56 413]

    [8]

    Lim C Y, Shu C, Niu X D, Chew Y T 2002 Phys. Fluids 14 2299

    [9]

    Hoogerbrugge P J, Koelman JMV A 1992 Europhys. Lett. 19 155

    [10]

    Liu M B, Meakin P, Huang H 2007 Phys. Fluids 19 033302

    [11]

    Liu M B, Meakin P, Huang H 2007 J. Computation. Phys. 222110

    [12]

    Liu M B, Chang J Z, Liu H T 2010 The 2nd International Conferenceon Computer and Automation Engineering, Singapore Feb.26–28 2010 p334

    [13]

    Cheng Y T, Rodak D E 2005 Appl. Phys. Lett. 86 144101

    [14]

    Mchale G, Shirtcliffe N J, Aqil S, Perry C C, Newton M I 2004Phys. Rev. Lett. 93 036102

    [15]

    Huang J J, Shu C, Chew Y T, Zheng H W 2007 Int. J. ModernPhys. C 18 492

    [16]

    Huang J, Shu C, Chew Y T 2009 Phys. Fluids 21 022103

    [17]

    Shi Z Y, Hu G H, Zhou Z W 2010 Acta Phys. Sin. 59 2595 (in Chinese) [石自媛, 胡国辉, 周哲纬 2010 59 2595]

    [18]

    Liu M B, Meakin P, Huang H S 2006 Phys. Fluids 18 017101

    [19]

    Espanol P, Serrano M, Zuniga I 1997 Int. J. Modern Phys. C 8899

    [20]

    Espanol P, Warren P 1995 Europhys. Lett. 30 191

    [21]

    Huilgol R R, Phan-Thien N 1997 Fluid Mechanics of Viscoelasticity:General Principles, Constitutive Modeling, Analytical AndNumerical Technique (Amsterdam: Elsevier)

    [22]

    Fan X J, Phan-Thien N, Ng T Y, Wu X H, Xu D 2003 Phys. Fluids15 11

    [23]

    Novik K E, Coveney P V 2000 Phys. Rev. E 61 435

    [24]

    Chen S, Phan-Thien N, Fan X J, Khoo B C 2004 J. Non-NewtonianFluid Mech. 118 65

    [25]

    Liu M B, Liu G R, Lam K Y 2003 J. Computation. Appl. Math.55 263

    [26]

    Chang J Z, Liu M B, Liu H T 2008 Acta Phys. Sin. 57 3954 (in Chinese) [常建忠, 留谋斌, 刘汉涛 2008 57 3954]

    [27]

    Wang X L, Chen S 2010 Acta Phys. Sin. 59 6778 (in Chinese) [王晓亮, 陈硕 2010 59 6778]

    [28]

    Kong B, Yang X Z 2006 Langmuir 22 2065

    [29]

    Liu J 2008 Thermal Micro-System Technology (Beijing: SciencePress) (in Chinese) [刘静 2008 热学微系统技术 (北京: 科学出版社)]

  • [1] 李春曦, 马成, 叶学民. 薄液滴在润湿性受限轨道上的热毛细迁移特性.  , 2023, 72(2): 024702. doi: 10.7498/aps.72.20221562
    [2] 李文, 马骁婧, 徐进良, 王艳, 雷俊鹏. 纳米结构及浸润性对液滴润湿行为的影响.  , 2021, 70(12): 126101. doi: 10.7498/aps.70.20201584
    [3] 邓梓龙, 李鹏宇, 张璇, 刘向东. T型微通道中液滴半阻塞不对称分裂行为研究.  , 2021, 70(7): 074701. doi: 10.7498/aps.70.20201171
    [4] 乔小溪, 张向军, 陈平, 田煜, 孟永钢. 微矩形凹槽表面液滴各向异性浸润行为的研究.  , 2020, 69(3): 034702. doi: 10.7498/aps.69.20191429
    [5] 叶学民, 张湘珊, 李明兰, 李春曦. 自润湿流体液滴的热毛细迁移特性.  , 2018, 67(18): 184704. doi: 10.7498/aps.67.20180660
    [6] 叶学民, 张湘珊, 李明兰, 李春曦. 液滴在不同润湿性表面上蒸发时的动力学特性.  , 2018, 67(11): 114702. doi: 10.7498/aps.67.20180159
    [7] 梁宏, 柴振华, 施保昌. 分叉微通道内液滴动力学行为的格子Boltzmann方法模拟.  , 2016, 65(20): 204701. doi: 10.7498/aps.65.204701
    [8] 叶学民, 李永康, 李春曦. 平衡接触角对受热液滴在水平壁面上铺展特性的影响.  , 2016, 65(10): 104704. doi: 10.7498/aps.65.104704
    [9] 王宇翔, 陈硕. 微粗糙结构表面液滴浸润特性的多体耗散粒子动力学研究.  , 2015, 64(5): 054701. doi: 10.7498/aps.64.054701
    [10] 林林, 袁儒强, 张欣欣, 王晓东. 液滴在梯度微结构表面上的铺展动力学分析.  , 2015, 64(15): 154705. doi: 10.7498/aps.64.154705
    [11] 景蔚萱, 王兵, 牛玲玲, 齐含, 蒋庄德, 陈路加, 周帆. ZnO纳米线薄膜的合成参数、表面形貌和接触角关系研究.  , 2013, 62(21): 218102. doi: 10.7498/aps.62.218102
    [12] 刘邱祖, 寇子明, 韩振南, 高贵军. 基于格子Boltzmann方法的液滴沿固壁铺展动态过程模拟.  , 2013, 62(23): 234701. doi: 10.7498/aps.62.234701
    [13] 李大鸣, 王志超, 白玲, 王笑. 液滴撞击孔口附近壁面运动过程的模拟研究.  , 2013, 62(19): 194704. doi: 10.7498/aps.62.194704
    [14] 苏铁熊, 马理强, 刘谋斌, 常建忠. 基于光滑粒子动力学方法的液滴冲击固壁面问题数值模拟.  , 2013, 62(6): 064702. doi: 10.7498/aps.62.064702
    [15] 葛宋, 陈民. 接触角与液固界面热阻关系的分子动力学模拟.  , 2013, 62(11): 110204. doi: 10.7498/aps.62.110204
    [16] 强洪夫, 刘开, 陈福振. 液滴在气固交界面变形移动问题的光滑粒子流体动力学模拟.  , 2012, 61(20): 204701. doi: 10.7498/aps.61.204701
    [17] 朱如曾, 闫红, 王小松. 关于固体表面上液体球冠的平衡条件问题——兼评“冷凝器壁面滴状冷凝的热力学机理及最佳接触角”等文章.  , 2010, 59(10): 7271-7277. doi: 10.7498/aps.59.7271
    [18] 石自媛, 胡国辉, 周哲玮. 润湿性梯度驱动液滴运动的格子Boltzmann模拟.  , 2010, 59(4): 2595-2600. doi: 10.7498/aps.59.2595
    [19] 王 飞, 何 枫. 微管道内两相流数值算法及在电浸润液滴控制中的应用.  , 2006, 55(3): 1005-1010. doi: 10.7498/aps.55.1005
    [20] 曹治觉, 夏伯丽, 张 云. 论小接触角下实现滴状冷凝的可能性.  , 2003, 52(10): 2427-2431. doi: 10.7498/aps.52.2427
计量
  • 文章访问数:  8460
  • PDF下载量:  928
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-04-18
  • 修回日期:  2011-06-02
  • 刊出日期:  2012-03-15

/

返回文章
返回
Baidu
map