搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

抽样法与灵敏度法keff不确定度量化

胡泽华 叶涛 刘雄国 王佳

引用本文:
Citation:

抽样法与灵敏度法keff不确定度量化

胡泽华, 叶涛, 刘雄国, 王佳

Uncertainty quantification in the calculation of keff using sensitity and stochastic sampling method

Hu Ze-Hua, Ye Tao, Liu Xiong-Guo, Wang Jia
PDF
导出引用
  • 核反应堆的中子学模拟计算中,核数据的不确定度导致的积分量计算结果的不确定度,通常采用基于微扰理论的灵敏度与不确定度分析方法(简称灵敏度法)量化.灵敏度分析法原则上只适用于线性模型,且一般输运计算程序难以直接进行灵敏度分析.而抽样法直接抽样核数据输入中子学计算程序进行计算,通过对计算结果的统计分析评估计算量的不确定度.抽样法易于实现、计算精确、且适用性强.在灵敏度分析与不确定度量化程序SURE中,增加了抽样法不确定度的量化功能.为将抽样法不确定度量化应用于复杂问题的模拟计算,需对其进行细致的考核.为此,选取简单的临界基准实验模型,分别采用灵敏度分析法和抽样法进行不确定度量化,得到了各核素各反应道核数据导致的keff计算不确定度.对比显示,两种方法的不确定度计算结果有很好的符合,验证了SURE程序抽样法功能的正确性.抽样法计算的keff符合正态分布,说明在一般核数据的不确定度范围内,keff与核数据近似成线性关系,利用灵敏度分析法评估keff计算值的不确定度是适用的.
    The sensitivity and uncertainty analysis(S/U) method based on the first order perturbation theory is commonly employed to calculate the uncertainties in-nuclear reactor's integral parameters, such as the neutron effective multiplication factor(keff), due to uncertainties in nuclear data. However, this method is only theoretically suitable for the linear model because of its first order approximation. Moreover, S/U method is difficult to incorporate into a neutronics code, because the adjoint angular flux is needed to obtain the sensitivity coefficient of an integral parameter to nuclear data. Meanwhile, the sampling approach based on parametric random sampling of input parameters, an easy implemented method, evaluates the uncertainties in the integral parameters by performing a set of neutronics simulations inputted with a set of stochastic nuclear data sampled from a multinomial normal distribution with nuclear cross section mean values and covariance data. The sampling approach is considered as a more exact method, as linear approximation is not needed. With the increase of computational power, the sampling methods with consuming more time are now possible. The sampling approach is incorporated into SURE, a sensitivity and uncertainty analysis code developed in IAPCM, as a functional module. A careful verification of the new function is necessary before it is used to analyze complicated problems, such as multi-physical coupling calculations of nuclear reactor. Two simple fast criticality benchmark experiments, namely Godiva(HEU-MET-FAST-001) and Jezebel(PU-MET-FAST-001), are selected to verify the sampling module of SURE. The uncertainties in nuclear data are given by multigroup covariance matrices processed from ENDF/B-VⅡ. 1 data. The uncertainties in the computed value of keff resulting from uncertainties in the nuclear data are calculated with both S/U and sampling methods. The uncertainties due to reaction cross sections for each nuclide in two benchmarks given by two methods with the multigroup covariance matrices are in good agreement. Since the S/U module of SURE code is verified extensively, the correctness of the sampling function of the code is confirmed as well. The distribution of the keff from the sampling approach obeys the normal distribution pretty well, which indicates that keff varies linearly with the nuclear data under its uncertainty range, since the nuclear data used in calculations are assumed to be normal distribution in the sampling method. The results from the sampling method also support the S/U method with linear approximation as a suitable uncertainty quantification method for keff calculation.
      通信作者: 胡泽华, hu_zehua@iapcm.ac.cn
    • 基金项目: 中国物理研究院中子物理学重点实验室基金(批准号:2013AA02)、能源局06重大专项(批准号:2015ZX06002008)和国家磁约束核聚变能研究专项(批准号:2015GB108002)资助的课题.
      Corresponding author: Hu Ze-Hua, hu_zehua@iapcm.ac.cn
    • Funds: Project supported by the Key Laboratory of Neutron Physics of China Academy of Engineering Physics(Grant No. 2013AA02), Sub-item of Special Project of the National Energy Bureau, China(Grant No. 2015ZX06002008), National Magnetic Confinement Fusion Energy Research Project, China(Grant No. 2015GB108002).
    [1]

    USDOE 2002 A Technology Roadmap for Generation-IV Nuclear Energy Systems USDOE/GIF-002-00(Washington:USDOE) p1

    [2]

    Salvatores M, Jacqmin R 2008 Uncertainty and Target Accuracy Assessment for Innovative Systems Using Recent Covariance Data Evaluations NEA/WPEC-26(Paris:OECD/NEA) p1

    [3]

    Marable J H, Weisbin C R 1979 Theory and Application of Sensitivity and Uncertainty Analysis(Oak Ridge:Oak Ridge National Laboratory) p16

    [4]

    Gilli L, Lathouwers D, Kloosterman J L, van der Hagen T H J J 2013 Nucl. Sci. Eng. 175 172

    [5]

    Kim D H, Gil C S, Lee Y O 2008 International Conference on Nuclear Data for Science and Technology Nice, France, April 22-27, 2007 p289

    [6]

    Kodeli I 2008 Sci. Technol. Nucl. Instll. 2008 659861

    [7]

    Pusa M 2012 Sci. Technol. Nucl. Instll. 2012 157029

    [8]

    Williams M L, Rearden B T 2008 Nucl. Data Sheets 109 5

    [9]

    Hu Z H, Wang J, Sun W L, Li M S 2013 Atom. Energy Sci. Technol. 47 25 (in Chinese)[胡泽华, 王佳, 孙伟力, 李茂生2013原子能科学技术47 25]

    [10]

    Dossantos-Uzarralde P J, Guittet A 2008 Nucl. Data Sheets 109 2894

    [11]

    Gilli L, Lathouwers D, Kloosterman J L, van der Hagen T H J J, Koning A J, Rochman D 2013 Ann. Nucl. Energy 56 71

    [12]

    Williams M M R 2007 Nucl. Sci. Eng. 155 109

    [13]

    Wieselquist W, Zhu T, Vasiliev A, Ferroukhi H 2013 Sci. Technol. Nucl. Instll. 2013 549793

    [14]

    Zhu T, Vasiliev A, Ferroukhi H, Pautz A 2014 Nucl. Data Sheets 118 453

    [15]

    Zhu T, Vasiliev A, Ferroukhi H, Pautz A 2015 Ann. Nucl. Energy 75 713

    [16]

    Zhu T, Vasiliev A, Ferroukhi H, Pautz A, Tarantola S 2015 J. Nucl. Sci. Technol. 52 8

    [17]

    Chadwick M B, Herman M, Oblozinsky P 2011 Nucl. Data Sheets 112 110

    [18]

    Engle W W J 1967 A User's Manual for ANISN:A One-Dimensional Discrete Ordinates Transport Code with Anisotropic Scattering(Oak Ridge:Oak Ridge Gaseous Diffusion Plant Computing Technology Center) p1

    [19]

    Macfarlane R E, Muir D W, Boicourt R M, Kahler A C 2012 The NJOY Nuclear Data Processing System (Los Alamos:Los Alamos National Laboratory) p1

    [20]

    Kiedrowski B C, Brown F B 2013 Nucl. Sci. Eng. 174 227

    [21]

    Briggs J B 2004 International Handbook of Evaluated Criticality Safety Benchmark Experiments(Paris:Nuclear Energy Agency) p1

  • [1]

    USDOE 2002 A Technology Roadmap for Generation-IV Nuclear Energy Systems USDOE/GIF-002-00(Washington:USDOE) p1

    [2]

    Salvatores M, Jacqmin R 2008 Uncertainty and Target Accuracy Assessment for Innovative Systems Using Recent Covariance Data Evaluations NEA/WPEC-26(Paris:OECD/NEA) p1

    [3]

    Marable J H, Weisbin C R 1979 Theory and Application of Sensitivity and Uncertainty Analysis(Oak Ridge:Oak Ridge National Laboratory) p16

    [4]

    Gilli L, Lathouwers D, Kloosterman J L, van der Hagen T H J J 2013 Nucl. Sci. Eng. 175 172

    [5]

    Kim D H, Gil C S, Lee Y O 2008 International Conference on Nuclear Data for Science and Technology Nice, France, April 22-27, 2007 p289

    [6]

    Kodeli I 2008 Sci. Technol. Nucl. Instll. 2008 659861

    [7]

    Pusa M 2012 Sci. Technol. Nucl. Instll. 2012 157029

    [8]

    Williams M L, Rearden B T 2008 Nucl. Data Sheets 109 5

    [9]

    Hu Z H, Wang J, Sun W L, Li M S 2013 Atom. Energy Sci. Technol. 47 25 (in Chinese)[胡泽华, 王佳, 孙伟力, 李茂生2013原子能科学技术47 25]

    [10]

    Dossantos-Uzarralde P J, Guittet A 2008 Nucl. Data Sheets 109 2894

    [11]

    Gilli L, Lathouwers D, Kloosterman J L, van der Hagen T H J J, Koning A J, Rochman D 2013 Ann. Nucl. Energy 56 71

    [12]

    Williams M M R 2007 Nucl. Sci. Eng. 155 109

    [13]

    Wieselquist W, Zhu T, Vasiliev A, Ferroukhi H 2013 Sci. Technol. Nucl. Instll. 2013 549793

    [14]

    Zhu T, Vasiliev A, Ferroukhi H, Pautz A 2014 Nucl. Data Sheets 118 453

    [15]

    Zhu T, Vasiliev A, Ferroukhi H, Pautz A 2015 Ann. Nucl. Energy 75 713

    [16]

    Zhu T, Vasiliev A, Ferroukhi H, Pautz A, Tarantola S 2015 J. Nucl. Sci. Technol. 52 8

    [17]

    Chadwick M B, Herman M, Oblozinsky P 2011 Nucl. Data Sheets 112 110

    [18]

    Engle W W J 1967 A User's Manual for ANISN:A One-Dimensional Discrete Ordinates Transport Code with Anisotropic Scattering(Oak Ridge:Oak Ridge Gaseous Diffusion Plant Computing Technology Center) p1

    [19]

    Macfarlane R E, Muir D W, Boicourt R M, Kahler A C 2012 The NJOY Nuclear Data Processing System (Los Alamos:Los Alamos National Laboratory) p1

    [20]

    Kiedrowski B C, Brown F B 2013 Nucl. Sci. Eng. 174 227

    [21]

    Briggs J B 2004 International Handbook of Evaluated Criticality Safety Benchmark Experiments(Paris:Nuclear Energy Agency) p1

  • [1] 寇科, 王错, 王晛, 连天虹, 焦明星, 樊毓臻. 线性调频激光回馈粒度探测灵敏度提升方法.  , 2023, 72(16): 169501. doi: 10.7498/aps.72.20230569
    [2] 陈大勇, 缪培贤, 史彦超, 崔敬忠, 刘志栋, 陈江, 王宽. 抽运-检测型原子磁力仪对电流源噪声的测量.  , 2022, 71(2): 024202. doi: 10.7498/aps.71.20211122
    [3] 张文杰, 刘郁松, 郭浩, 韩星程, 蔡安江, 李圣昆, 赵鹏飞, 刘俊. 双螺线圈射频共振结构增强硅空位自旋传感灵敏度方法.  , 2020, 69(23): 234206. doi: 10.7498/aps.69.20200765
    [4] 左小杰, 孙颍榕, 闫智辉, 贾晓军. 高灵敏度的量子迈克耳孙干涉仪.  , 2018, 67(13): 134202. doi: 10.7498/aps.67.20172563
    [5] 梁霄, 王瑞利. 爆轰流体力学模型敏感度分析与模型确认.  , 2017, 66(11): 116401. doi: 10.7498/aps.66.116401
    [6] 史生才, 李婧, 张文, 缪巍. 超高灵敏度太赫兹超导探测器.  , 2015, 64(22): 228501. doi: 10.7498/aps.64.228501
    [7] 王俊平, 戚苏阳, 刘士钢. 基于版图优化的综合灵敏度模型.  , 2014, 63(12): 128503. doi: 10.7498/aps.63.128503
    [8] 江莺, 梁大开, 曾捷, 倪晓宇. 监测点波长对高双折射光纤环镜轴向应变灵敏度的影响.  , 2013, 62(6): 064216. doi: 10.7498/aps.62.064216
    [9] 田会娟, 牛萍娟. 基于delta-P1近似模型的空间分辨漫反射一阶散射参量灵敏度研究.  , 2013, 62(3): 034201. doi: 10.7498/aps.62.034201
    [10] 徐晋, 谢品华, 司福祺, 李昂, 周海金, 吴丰成, 王杨, 刘建国, 刘文清. 基于机载平台的NO2 垂直廓线反演灵敏度研究.  , 2013, 62(10): 104214. doi: 10.7498/aps.62.104214
    [11] 胡慧君, 赵宝升, 盛立志, 赛小锋, 鄢秋荣, 陈宝梅, 王朋. 用于脉冲星导航的X射线光子计数探测器研究.  , 2012, 61(1): 019701. doi: 10.7498/aps.61.019701
    [12] 张小东, 邱孟通, 张建福, 欧阳晓平, 张显鹏, 陈亮. 一种基于4He气闪烁体的裂变中子探测器.  , 2012, 61(23): 232502. doi: 10.7498/aps.61.232502
    [13] 陈国云, 辛勇, 黄福成, 魏志勇, 雷升杰, 黄三玻, 朱立, 赵经武, 马加一. 用于反应堆中子/ 射线混合场测量的涂硼电离室性能.  , 2012, 61(8): 082901. doi: 10.7498/aps.61.082901
    [14] 宋顾周, 马继明, 王奎禄, 周鸣. 厚针孔射线成像品质因数的研究.  , 2012, 61(10): 102902. doi: 10.7498/aps.61.102902
    [15] 王光强, 王建国, 童长江, 李小泽, 王雪锋. 高功率太赫兹脉冲半导体探测器的分析与设计.  , 2011, 60(3): 030702. doi: 10.7498/aps.60.030702
    [16] 龚元, 郭宇, 饶云江, 赵天, 吴宇, 冉曾令. 光纤法布里-珀罗复合结构折射率传感器的灵敏度分析.  , 2011, 60(6): 064202. doi: 10.7498/aps.60.064202
    [17] 侯建平, 宁韬, 盖双龙, 李鹏, 郝建苹, 赵建林. 基于光子晶体光纤模间干涉的折射率测量灵敏度分析.  , 2010, 59(7): 4732-4737. doi: 10.7498/aps.59.4732
    [18] 任利春, 周林, 李润兵, 刘敏, 王谨, 詹明生. 不同序列拉曼光脉冲对原子重力仪灵敏度的影响.  , 2009, 58(12): 8230-8235. doi: 10.7498/aps.58.8230
    [19] 张显鹏, 欧阳晓平, 张忠兵, 田 耕, 陈彦丽, 李大海, 张小东. 组合式Si-PIN 14 MeV中子探测器.  , 2008, 57(1): 82-87. doi: 10.7498/aps.57.82
    [20] 刘 迎, 王利军, 郭云峰, 张小娟, 高宗慧, 田会娟. 空间分辨漫反射的高阶参量灵敏度.  , 2007, 56(4): 2119-2123. doi: 10.7498/aps.56.2119
计量
  • 文章访问数:  6879
  • PDF下载量:  211
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-07
  • 修回日期:  2016-09-30
  • 刊出日期:  2017-01-05

/

返回文章
返回
Baidu
map