搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氧氯化铋/铯铅氯范德瓦耳斯异质结环境稳定性与光电性质的第一性原理研究

姚熠舟 曹丹 颜洁 刘雪吟 王建峰 姜舟婷 舒海波

引用本文:
Citation:

氧氯化铋/铯铅氯范德瓦耳斯异质结环境稳定性与光电性质的第一性原理研究

姚熠舟, 曹丹, 颜洁, 刘雪吟, 王建峰, 姜舟婷, 舒海波

A first-principles study on environmental stability and optoelectronic properties of bismuth oxychloride/ cesium lead chloride van der Waals heterojunctions

Yao Yi-Zhou, Cao Dan, Yan Jie, Liu Xue-Yin, Wang Jian-Feng, Jiang Zhou-Ting, Shu Hai-Bo
PDF
HTML
导出引用
  • 以铯铅氯为代表的全无机金属卤化物钙钛矿因为优异的光电性质与缺陷容忍度成为发展高性能光伏和光电子器件的重要候选材料. 然而, 较差的结构稳定性成为限制其商业化应用的瓶颈问题. 本文提出范德瓦耳斯集成薄层的氧氯化铋(BiOCl)在铯铅氯钙钛矿(CsPbCl3)表面形成范德瓦耳斯异质结, 结合第一性原理计算与从头算分子动力学模拟系统研究了BiOCl/CsPbCl3范德瓦耳斯异质结的环境稳定性以及界面效应对其光电性质的影响. 计算结果表明, 范德瓦耳斯集成BiOCl在CsPbCl3的表面能够极大地改善其环境稳定性, 这源于高稳定的BiOCl层隔绝了水和氧分子与钙钛矿晶格的反应. 并且, 两种不同终端的BiOCl/CsPbCl3范德瓦耳斯异质结显示II型的能带结构, 这有助于促进载流子分离; 但是, CsCl终端的异质结表现出比PbCl2终端异质结更大的能带带阶, 导致CsCl终端的异质结具有更高的开路电压和更低的暗电流. 由于BiOCl和CsPbCl3不同的禁带宽度使得异质结在可见到紫外光区域都显示出较高的光学吸收系数. 本工作为提高CsPbCl3钙钛矿材料的结构稳定性以及在高性能光电器件的应用提供了一个新的思路和理论基础.
    All-inorganic metal halide perovskites represented by cesium lead chloride have become important candidates for the development of high-performance photovoltaic and optoelectronic devices due to their excellent optoelectronic properties and defect tolerance. However, poor structural stability has become a bottleneck for its commercial applications. In this work, we propose to integrate thin layers of bismuth oxychloride (BiOCl) on the surface of cesium lead chloride perovskite (CsPbCl3) to form a van der Waals heterojunction. And we systematically study the environmental stability of BiOCl/CsPbCl3 van der Waals heterojunction and the influence of interfacial effects on its optoelectronic properties by combining first-principles calculations and ab initio molecular dynamics simulations. The calculated results show that the van der Waals integrated BiOCl on the surface of CsPbCl3 can greatly improve its environmental stability, which is due to the highly stable BiOCl layer isolating the reaction of water and oxygen molecules with the perovskite lattice. Moreover, the two BiOCl/CsPbCl3 van der Waals heterojunctions show a type-II band structure, which conduces to promoting the carrier separation. At the same time, the two heterojunctions have small effective carrier mass, which well preserves the excellent carrier transport properties of CsPbCl3 and BiOCl. However, CsCl-terminated heterojunctions exhibit larger band orders than PbCl2-terminated heterojunctions, which can lead to higher open-circuit voltages and lower dark currents in CsCl-terminated heterojunctions. Owing to the different band gaps of BiOCl and CsPbCl3, the heterojunctions show high optical absorption coefficients in the visible-to-ultraviolet region. This work provides a new idea and theoretical basis for improving the structural stability of CsPbCl3 perovskite materials and their applications in high-performance optoelectronic devices.
      通信作者: 曹丹, caodan@cjlu.edu.cn
    • 基金项目: 浙江省自然科学基金(批准号: LY22A040002, LY19A040006)和国家自然科学基金(批准号: 61775201, 21873087)资助的课题.
      Corresponding author: Cao Dan, caodan@cjlu.edu.cn
    • Funds: Project supported by the Natural Science Foundation of the Zhejiang province, China (Grant Nos. LY22A040002, LY19A040006) and the National Natural Science Foundation of China (Grant Nos. 61775201, 21873087).
    [1]

    姚鑫, 丁艳丽, 张晓丹, 赵颖 2015 64 038805Google Scholar

    Yao X, Ding Y L, Zhang X D, Zhao Y 2015 Acta Phys. Sin. 64 038805Google Scholar

    [2]

    Jeong J, Kim M, Seo J, Lu H, Ahlawat P, Mishra A, Yang Y, Hope M A, Eickemeyer F T, Kim M, Yoon Y J, Choi I W, Darwich B P, Choi S J, Jo Y, Lee J H, Walker B, Zakeeruddin S M, Emsley L, Rothlisberger U, Hagfeldt A, Kim D S, Gratzel M, Kim J Y 2021 Nature 592 381Google Scholar

    [3]

    Valverde-Chávez D A, Ponseca C S, Stoumpos C C, Yartsev A, Kanatzidis M G, Sundström V, Cooke D G 2015 Energy Environ. Sci. 8 3700Google Scholar

    [4]

    Wang Y P, Gong C, Rao G, Hu K, Wang X, Yan C, Dai L, Wu C, Xiong J 2018 Adv. Opt. Mater. 6 1701302Google Scholar

    [5]

    Conings B, Drijkoningen J, Gauquelin N, Babayigit A, D'Haen J, D’Olieslaeger L, Ethirajan A, Verbeeck J, Manca J, Mosconi E, Angelis F D, Boyen H G 2015 Adv. Energy Mater. 5 1500477Google Scholar

    [6]

    Bai F, Qi J, Li F, Fang Y, Han W, Wu H, Zhang Y 2018 Adv. Mater. Interfaces 5 1701275Google Scholar

    [7]

    Ouedraogo N A N, Chen Y, Xiao Y Y, Meng Q, Han C B, Yan H, Zhang Y 2020 Nano Energy 67 104249Google Scholar

    [8]

    Yang J, Zhang Q, Xu J, Liu H, Qin R, Zhai H, Chen S, Yuan M 2019 Nanomaterials 9 1666Google Scholar

    [9]

    Liu C, Li W, Li H, Wang H, Zhang C, Yang Y, Gao X, Xue Q, Yip H L, Fan J, Schropp R E I, Mai Y 2019 Adv. Energy Mater. 9 1803572Google Scholar

    [10]

    Liu X, Wang X, Zhang T, Miao Y, Qin Z, Chen Y, Zhao Y 2021 Angew Chem. Int Ed. 60 12351Google Scholar

    [11]

    Wu L, Chen K, Huang W, Lin Z, Zhao J, Jiang X, Ge Y, Zhang F, Xiao Q, Guo Z, Xiang Y, Li J, Bao Q, Zhang H 2018 Adv. Opt. Mater. 6 1800400Google Scholar

    [12]

    Lee J W, Dai Z, Han T H, Choi C, Chang S Y, Lee S J, De Marco N, Zhao H, Sun P, Huang Y, Yang Y 2018 Nat. Commun. 9 3021Google Scholar

    [13]

    刘晓敏, 李亦回, 王兴涛, 赵一新 2019 68 158805Google Scholar

    Liu X M, Li Y H, Wang X T, Zhao Y X 2019 Acta Phys. Sin. 68 158805Google Scholar

    [14]

    Chen P, Bai Y, Wang S, Lyu M, Yun J H, Wang L 2018 Adv. Funct. Mater. 28 1706923Google Scholar

    [15]

    Schlipf J, Hu Y, Pratap S, Bießmann L, Hohn N, Porcar L, Bein T, Docampo P, Müller B P 2019 ACS Appl. Energy Mater. 2 1011Google Scholar

    [16]

    Zhang T, Long M, Qin M, Lu X, Chen S, Xie F, Gong L, Chen J, Chu M, Miao Q, Chen Z, Xu W, Liu P, Xie W, Xu J B 2018 Joule 2 2706Google Scholar

    [17]

    Lin D, Zhang T, Wang J, Long M, Xie F, Chen J, Wu B, Shi T, Yan K, Xie W, Liu P, Xu J 2019 Nano Energy 59 619Google Scholar

    [18]

    Loi H L, Cao J, Guo X, Liu C K, Wang N, Song J, Tang G, Zhu Y, Yan F 2020 Adv. Sci. 7 2000776Google Scholar

    [19]

    王其, 延玲玲, 陈兵兵, 李仁杰, 王三龙, 王鹏阳, 黄茜, 许盛之, 侯国付, 陈新亮, 李跃龙, 丁毅, 张德坤, 王广才, 赵颖, 张晓丹 2021 70 057802Google Scholar

    Wang Q, Yan L L, Chen B B, Li R J, Wang S L, Wang P Y, Huang Q, Xu S Z, Hou G F, Chen X L, Li Y L, Ding Y, Zhang D K, Wang G C, Zhao Y, Zhang X D 2021 Acta Phys. Sin. 70 057802Google Scholar

    [20]

    He J, Su J, Lin Z, Zhang S, Qin Y, Zhang J, Chang J, Hao Y 2019 J. Phys. Chem. C 123 7158Google Scholar

    [21]

    Liu Z, Chang J, Lin Z, Zhou L, Yang Z, Chen D, Zhang C, Liu S F, Hao Y 2018 Adv. Energy Mater. 8 1703432Google Scholar

    [22]

    Zhang H, Liu L, Zhou Z 2012 RSC Adv. 2 9224Google Scholar

    [23]

    Gnayem H, Sasson Y 2013 ACS Catalysis 3 186Google Scholar

    [24]

    Zhang X, Ai Z, Jia F, Zhang L J 2008 J. Phys. Chem. C 112 747Google Scholar

    [25]

    Ye L, Zan L, Tian L, Peng T, Zhang J 2011 Chem. Commun. 47 6951Google Scholar

    [26]

    Zhang K, Liang J, Wang S, Liu J, Ren K, Zheng X, Luo H, Peng Y, Zou X, Bo X, Li J, Yu X 2012 Cryst. Growth Des. 12 793Google Scholar

    [27]

    Liu X, Su Y, Zhao Q, Du C, Liu Z 2016 Sci. Rep. 6 28689Google Scholar

    [28]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [29]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [30]

    Blochl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [31]

    Payne M C, Teter M P, Allan D C, Arias T A, Joannopoulos J D 1992 Rev. Mod. Phys. 64 1045Google Scholar

    [32]

    Krukau A V, Vydrov O A, Izmaylov A F, Scuseria G E 2006 J. Chem. Phys. 125 224106Google Scholar

    [33]

    Wang N, Cao D, Wang J, Liang P, Chen X, Shu H 2017 J. Mater. Chem. C 5 9687Google Scholar

    [34]

    Boyd C C, Cheacharoen R, Leijtens T, McGehee M D 2019 Chem. Rev. 119 3418Google Scholar

    [35]

    Berhe T A, Su W N, Chen C H, Pan C J, Cheng J H, Chen H M, Tsai M C, Chen L Y, Dubale A A, Hwang B J 2016 Energy Environ. Sci. 9 323Google Scholar

    [36]

    Lu Z H, Lockwood D J, Baribeau J M 1995 Nature 378 258Google Scholar

    [37]

    Murtaza G, Ahmad I 2011 Physica B 406 3222Google Scholar

    [38]

    Zheng B, Ma C, Li D, Lan J, Zhang Z, Sun X, Zheng W, Yang T, Zhu C, Ouyang G, Xu G, Zhu X, Wang X, Pan A 2018 J. Am. Chem. Soc. 140 11193Google Scholar

    [39]

    Duan X, Wang C, Shaw J C, Cheng R, Chen Y, Li H, Wu X, Tang Y, Zhang Q, Pan A, Jiang J, Yu R, Huang Y, Duan X 2014 Nat. Nanotechnol. 9 1024Google Scholar

    [40]

    Zheng B, Ma C, Li D, Lan J, Zhang Z, Sun X, Zheng W, Yang T, Zhu C, Ouyang G, Xu G, Zhu X, Wang X, Pan A 2018 JACS 140 11193

    [41]

    Roy T, Tosun M, Hettick M, Ahn G H, Hu C, Javey A 2016 Appl. Phys. Lett. 108 083111Google Scholar

    [42]

    Liao C S, Yu Z L, He P B, Zhao Y Q, Liu B, Cai M Q 2020 J. Power Sources 478 229078Google Scholar

  • 图 1  BiOCl/CsPbCl3异质结构建过程 (a) CsCl终端CsPbCl3, (b) BiOCl和(c) PbCl2终端CsPbCl3结构俯视图(蓝框为初始晶胞, 黄框为构建异质结所选晶格大小, CsPbCl3材料黄蓝框相重合); (d) CsCl和(e) PbCl2终端的异质结构型

    Fig. 1.  The construction process of the BiOCl/CsPbCl3 heterostructure: The top views of (a) CsCl-terminated, (b) BiOCl and (c) PbCl2-terminated of CsPbCl3 structure (the blue box is the initial unit cell, and the yellow box is the lattice selected for the construction of the heterojunction; (d) CsCl-terminated and (e)PbCl2-terminated heterojunction structures.

    图 2  (a)表面覆盖了水氧分子层的2L-CsPbCl3结构以及BiOCl/CsPbCl3异质结在AIMD模拟中的能量随模拟时间的变化曲线图(上方曲线为2L-CsPbCl3结构, 下方为HIT-CsCl异质结); (b) 2L-CsPbCl3和(c)BiOCl/CsPbCl3异质结在温度为300 K下, AIMD轨迹在时间为0, 2, 4和6 ps时的快照

    Fig. 2.  The total energies of (a) 2L-CsPbCl3 and (b) BiOCl/CsPbCl3 as a function of AIMD simulation time; (b), (c) the snapshots of AIMD trajectories for PNMA-3 and DPA-3 at the simulation time of 0, 2, 4 and 6 ps.

    图 3  异质结带阶类型预测图 (a) CsCl终端CsPbCl3, (b) BiOCl与(c)PbCl2终端CsPbCl3的能带、态密度以及电荷密度等值面(CDI)分布图; (d)三种结构带边相对真空能级的位置与分子构型图; (e)五种带阶类型示意图

    Fig. 3.  Heterogeneous band alignment type predictive diagram: Energy band, density of states and charge density isosurface (CDI) distributions of (a) CsCl-terminated CsPbCl3, (b) BiOCl and (c) PbCl2-terminated CsPbCl3; (d) position comparison diagram of three structural strip positions relative vacuum level, wherein the illustrations are a molecular configuration diagram of three structures; (e) tive lead types that can be formed by constructing heterojunction.

    图 4  BiOCl/CsPbCl3异质结的电子性质 (a)II型带阶类型的载流子输运示意图; (b)载流子有效质量柱状图; (c) CsCl终端与(d)PbCl2终端异质结的投影能带图、组分之间带边差异、态密度图以及CDI分布图

    Fig. 4.  Electronic properties of BiOCl/CsPbCl3 heterojunctions: (a) Schematic diagram of carrier transport of type II band-order type; (b) effective carrier mass; (c) CsCl-terminated and (d) PbCl2-terminated heterojunctions Projected energy band diagrams, band edge differences between components, density of states diagrams, and CDI distribution diagrams.

    图 5  BiOCl/CsPbCl3异质结及其原料的光吸收图 (a)异质结器件沿面内 (ω//) 和面外 (ω) 方向的光照射示意图; 不同终端异质结及其原料沿(b)面内(α//)和(c)面外(α)方向的光吸收光谱(虚线范围对应于波长范围为390—780 nm的可见光区域)

    Fig. 5.  Optical absorption diagram of BiOCl/CsPbCl3 heterojunction and its components: (a) Schematic illustration of light illumination in the in-plane (ω//) and out-of-plane (ω) directions of the heterojunction device; optical absorption spectra of different terminated heterojunctions and their components along (b) in-plane (α//) and (c) out-of-plane (α) directions (the dotted line range corresponds to the visible region of wavelengths from 390 to 780 nm).

    图 A1  8种异质结构型图 (a)—(d)CsCl终端CsPbCl3与BiOCl构建的4种异质结, 原子对齐位置如红线所标注; (e)—(h) PbCl2终端CsPbCl3与BiOCl构建的4种异质结, 原子对齐位置与CsCl终端相同

    Fig. A1.  Figures of 8 types of heterostructures: (a)–(d) Four types of heterojunctions constructed by CsCl-terminated CsPbCl3 and BiOCl, and the atomic alignment positions are marked by red lines; (e)–(h) four types of heterojunctions constructed by PbCl2-terminated CsPbCl3 and BiOCl, with atoms aligned The position is the same as the CsCl terminal.

    Fig. B1.  BiOCl/CsPbCl3 perovskite heterojunctions with type II band alignment shows excellent environmental stability and optoelectronic properties.

    表 A1  不同终端的8种BiOCl/CsPbCl3异质结构型的能量和层间距

    Table A1.  Energy comparison and layer spacing of eight BiOCl/CsPbCl3 heterojunctions types with different terminations.

    StructuresMethodEnergy/eVLayer
    Spacing/ Å
    HIT-CsClPBES1–134.473.26
    S2–134.463.68
    S3–134.433.41
    S4–134.413.44
    HIT-PbCl2S1–138.553.35
    S2–138.573.28
    S3–138.543.28
    S4–138.543.29
    下载: 导出CSV

    表 B1  1 L-BiOCl、两种终端4 L-CsPbCl3和两种终端HIT的总原子数 (Ntot)、异质结层间距、优化后的晶格参数 (a, bc)、带隙(Eg)、形成能 (Ef)和载流子有效质量(m*)

    Table B1.  1 L-BiOCl, 4 L-CsPbCl3 with two terminations, and HIT with two terminations: total atomic number (Ntot), heterojunction interlayer spacing, optimized lattice parameters (a, b and c), band gap (Eg), formation energy (Ef) and carrier effective mass (m*).

    NtotLayer spacing
    Lattice constant /ÅEg/eVEf/eVm*
    abcmemh
    1L-BiOCl125.735.7342.963.480.381.71
    4L-CsPbCl3-CsCl225.725.7242.863.000.210.22
    4L-CsPbCl3-PbCl2235.725.7242.863.020.300.22
    HIT-CsCl223.175.705.7142.771.518.6×10–30.440.22
    HIT-PbCl2233.355.715.7142.781.608.9×10–30.340.23
    下载: 导出CSV
    Baidu
  • [1]

    姚鑫, 丁艳丽, 张晓丹, 赵颖 2015 64 038805Google Scholar

    Yao X, Ding Y L, Zhang X D, Zhao Y 2015 Acta Phys. Sin. 64 038805Google Scholar

    [2]

    Jeong J, Kim M, Seo J, Lu H, Ahlawat P, Mishra A, Yang Y, Hope M A, Eickemeyer F T, Kim M, Yoon Y J, Choi I W, Darwich B P, Choi S J, Jo Y, Lee J H, Walker B, Zakeeruddin S M, Emsley L, Rothlisberger U, Hagfeldt A, Kim D S, Gratzel M, Kim J Y 2021 Nature 592 381Google Scholar

    [3]

    Valverde-Chávez D A, Ponseca C S, Stoumpos C C, Yartsev A, Kanatzidis M G, Sundström V, Cooke D G 2015 Energy Environ. Sci. 8 3700Google Scholar

    [4]

    Wang Y P, Gong C, Rao G, Hu K, Wang X, Yan C, Dai L, Wu C, Xiong J 2018 Adv. Opt. Mater. 6 1701302Google Scholar

    [5]

    Conings B, Drijkoningen J, Gauquelin N, Babayigit A, D'Haen J, D’Olieslaeger L, Ethirajan A, Verbeeck J, Manca J, Mosconi E, Angelis F D, Boyen H G 2015 Adv. Energy Mater. 5 1500477Google Scholar

    [6]

    Bai F, Qi J, Li F, Fang Y, Han W, Wu H, Zhang Y 2018 Adv. Mater. Interfaces 5 1701275Google Scholar

    [7]

    Ouedraogo N A N, Chen Y, Xiao Y Y, Meng Q, Han C B, Yan H, Zhang Y 2020 Nano Energy 67 104249Google Scholar

    [8]

    Yang J, Zhang Q, Xu J, Liu H, Qin R, Zhai H, Chen S, Yuan M 2019 Nanomaterials 9 1666Google Scholar

    [9]

    Liu C, Li W, Li H, Wang H, Zhang C, Yang Y, Gao X, Xue Q, Yip H L, Fan J, Schropp R E I, Mai Y 2019 Adv. Energy Mater. 9 1803572Google Scholar

    [10]

    Liu X, Wang X, Zhang T, Miao Y, Qin Z, Chen Y, Zhao Y 2021 Angew Chem. Int Ed. 60 12351Google Scholar

    [11]

    Wu L, Chen K, Huang W, Lin Z, Zhao J, Jiang X, Ge Y, Zhang F, Xiao Q, Guo Z, Xiang Y, Li J, Bao Q, Zhang H 2018 Adv. Opt. Mater. 6 1800400Google Scholar

    [12]

    Lee J W, Dai Z, Han T H, Choi C, Chang S Y, Lee S J, De Marco N, Zhao H, Sun P, Huang Y, Yang Y 2018 Nat. Commun. 9 3021Google Scholar

    [13]

    刘晓敏, 李亦回, 王兴涛, 赵一新 2019 68 158805Google Scholar

    Liu X M, Li Y H, Wang X T, Zhao Y X 2019 Acta Phys. Sin. 68 158805Google Scholar

    [14]

    Chen P, Bai Y, Wang S, Lyu M, Yun J H, Wang L 2018 Adv. Funct. Mater. 28 1706923Google Scholar

    [15]

    Schlipf J, Hu Y, Pratap S, Bießmann L, Hohn N, Porcar L, Bein T, Docampo P, Müller B P 2019 ACS Appl. Energy Mater. 2 1011Google Scholar

    [16]

    Zhang T, Long M, Qin M, Lu X, Chen S, Xie F, Gong L, Chen J, Chu M, Miao Q, Chen Z, Xu W, Liu P, Xie W, Xu J B 2018 Joule 2 2706Google Scholar

    [17]

    Lin D, Zhang T, Wang J, Long M, Xie F, Chen J, Wu B, Shi T, Yan K, Xie W, Liu P, Xu J 2019 Nano Energy 59 619Google Scholar

    [18]

    Loi H L, Cao J, Guo X, Liu C K, Wang N, Song J, Tang G, Zhu Y, Yan F 2020 Adv. Sci. 7 2000776Google Scholar

    [19]

    王其, 延玲玲, 陈兵兵, 李仁杰, 王三龙, 王鹏阳, 黄茜, 许盛之, 侯国付, 陈新亮, 李跃龙, 丁毅, 张德坤, 王广才, 赵颖, 张晓丹 2021 70 057802Google Scholar

    Wang Q, Yan L L, Chen B B, Li R J, Wang S L, Wang P Y, Huang Q, Xu S Z, Hou G F, Chen X L, Li Y L, Ding Y, Zhang D K, Wang G C, Zhao Y, Zhang X D 2021 Acta Phys. Sin. 70 057802Google Scholar

    [20]

    He J, Su J, Lin Z, Zhang S, Qin Y, Zhang J, Chang J, Hao Y 2019 J. Phys. Chem. C 123 7158Google Scholar

    [21]

    Liu Z, Chang J, Lin Z, Zhou L, Yang Z, Chen D, Zhang C, Liu S F, Hao Y 2018 Adv. Energy Mater. 8 1703432Google Scholar

    [22]

    Zhang H, Liu L, Zhou Z 2012 RSC Adv. 2 9224Google Scholar

    [23]

    Gnayem H, Sasson Y 2013 ACS Catalysis 3 186Google Scholar

    [24]

    Zhang X, Ai Z, Jia F, Zhang L J 2008 J. Phys. Chem. C 112 747Google Scholar

    [25]

    Ye L, Zan L, Tian L, Peng T, Zhang J 2011 Chem. Commun. 47 6951Google Scholar

    [26]

    Zhang K, Liang J, Wang S, Liu J, Ren K, Zheng X, Luo H, Peng Y, Zou X, Bo X, Li J, Yu X 2012 Cryst. Growth Des. 12 793Google Scholar

    [27]

    Liu X, Su Y, Zhao Q, Du C, Liu Z 2016 Sci. Rep. 6 28689Google Scholar

    [28]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [29]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [30]

    Blochl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [31]

    Payne M C, Teter M P, Allan D C, Arias T A, Joannopoulos J D 1992 Rev. Mod. Phys. 64 1045Google Scholar

    [32]

    Krukau A V, Vydrov O A, Izmaylov A F, Scuseria G E 2006 J. Chem. Phys. 125 224106Google Scholar

    [33]

    Wang N, Cao D, Wang J, Liang P, Chen X, Shu H 2017 J. Mater. Chem. C 5 9687Google Scholar

    [34]

    Boyd C C, Cheacharoen R, Leijtens T, McGehee M D 2019 Chem. Rev. 119 3418Google Scholar

    [35]

    Berhe T A, Su W N, Chen C H, Pan C J, Cheng J H, Chen H M, Tsai M C, Chen L Y, Dubale A A, Hwang B J 2016 Energy Environ. Sci. 9 323Google Scholar

    [36]

    Lu Z H, Lockwood D J, Baribeau J M 1995 Nature 378 258Google Scholar

    [37]

    Murtaza G, Ahmad I 2011 Physica B 406 3222Google Scholar

    [38]

    Zheng B, Ma C, Li D, Lan J, Zhang Z, Sun X, Zheng W, Yang T, Zhu C, Ouyang G, Xu G, Zhu X, Wang X, Pan A 2018 J. Am. Chem. Soc. 140 11193Google Scholar

    [39]

    Duan X, Wang C, Shaw J C, Cheng R, Chen Y, Li H, Wu X, Tang Y, Zhang Q, Pan A, Jiang J, Yu R, Huang Y, Duan X 2014 Nat. Nanotechnol. 9 1024Google Scholar

    [40]

    Zheng B, Ma C, Li D, Lan J, Zhang Z, Sun X, Zheng W, Yang T, Zhu C, Ouyang G, Xu G, Zhu X, Wang X, Pan A 2018 JACS 140 11193

    [41]

    Roy T, Tosun M, Hettick M, Ahn G H, Hu C, Javey A 2016 Appl. Phys. Lett. 108 083111Google Scholar

    [42]

    Liao C S, Yu Z L, He P B, Zhao Y Q, Liu B, Cai M Q 2020 J. Power Sources 478 229078Google Scholar

  • [1] 袁文翎, 姚碧霞, 李喜, 胡顺波, 任伟. 第一性原理计算研究γ'-Co3(V, M) (M = Ti, Ta)相的结构稳定性、力学和热力学性质.  , 2024, 73(8): 086104. doi: 10.7498/aps.73.20231755
    [2] 张英楠, 张敏, 张派, 胡文博. 基于第一性原理GGA+U方法研究Si掺杂β-Ga2O3电子结构和光电性质.  , 2024, 73(1): 017102. doi: 10.7498/aps.73.20231147
    [3] 汪帆帆, 陈栋, 袁军, 张珠峰, 姜涛, 周骏. Sb/SnC范德瓦耳斯异质结光电性质的层间转角依赖性及其应用.  , 2024, 73(22): 227101. doi: 10.7498/aps.73.20241138
    [4] 孙婷钰, 吴量, 何贤娟, 姜楠, 周文哲, 欧阳方平. 应变和电场对Ga2SeTe/In2Se3异质结电子结构和光学性质的影响.  , 2023, 72(7): 076301. doi: 10.7498/aps.72.20222250
    [5] 孔宇晗, 王蓉, 徐明生. CuPc/MoS2范德瓦耳斯异质结荧光特性.  , 2022, 71(12): 128103. doi: 10.7498/aps.71.20220132
    [6] 王兰, 程思远, 曾航航, 谢聪伟, 龚元昊, 郑植, 范晓丽. CuBiI三元化合物晶体结构预测及光电性能第一性原理研究.  , 2021, 70(20): 207305. doi: 10.7498/aps.70.20210145
    [7] 张硕鑫, 刘士余, 严达利, 余浅, 任海涛, 于彬, 李德军. Ta1–xHfxC和Ta1–xZrxC固溶体的结构稳定性和力学性质的第一性原理研究.  , 2021, 70(11): 117102. doi: 10.7498/aps.70.20210191
    [8] 徐翔, 张莹, 闫庆, 刘晶晶, 王骏, 徐新龙, 华灯鑫. 不同堆垛结构二硫化铼/石墨烯异质结的光电化学特性.  , 2021, 70(9): 098203. doi: 10.7498/aps.70.20201904
    [9] 卢辉东, 韩红静, 刘杰. 有机铅碘钙钛矿太阳电池结构优化及光电性能计算.  , 2021, 70(16): 168802. doi: 10.7498/aps.70.20210134
    [10] 高立科, 赵先豪, 刁心峰, 唐天宇, 唐延林. 第一性原理对CsSnBr3施加静水压力后光电性质的探究.  , 2021, 70(15): 158801. doi: 10.7498/aps.70.20210397
    [11] 卢辉东, 韩红静, 刘杰. FA1–xCsx PbI3–y Bry钙钛矿材料优化及太阳电池性能计算.  , 2021, 70(3): 036301. doi: 10.7498/aps.70.20201387
    [12] 吴甜, 姚梦丽, 龙孟秋. 钙钛矿CsPbX3(X=Cl, Br, I)与五环石墨烯范德瓦耳斯异质结的界面相互作用和光电性能的第一性原理研究.  , 2021, 70(5): 056301. doi: 10.7498/aps.70.20201246
    [13] 胡前库, 秦双红, 吴庆华, 李丹丹, 张斌, 袁文凤, 王李波, 周爱国. 三元Nb系和Ta系硼碳化物稳定性和物理性能的第一性原理研究.  , 2020, 69(11): 116201. doi: 10.7498/aps.69.20200234
    [14] 罗雄, 孟威威, 陈国旭佳, 管晓溪, 贾双凤, 郑赫, 王建波. 二维Nb2SiTe4基化合物稳定性、电子结构和光学性质的第一性原理研究.  , 2020, 69(19): 197102. doi: 10.7498/aps.69.20200848
    [15] 王丹, 邹娟, 唐黎明. 氢化二维过渡金属硫化物的稳定性和电子特性: 第一性原理研究.  , 2019, 68(3): 037102. doi: 10.7498/aps.68.20181597
    [16] 马振宁, 蒋敏, 王磊. Mg-Y-Zn合金三元金属间化合物的电子结构及其相稳定性的第一性原理研究.  , 2015, 64(18): 187102. doi: 10.7498/aps.64.187102
    [17] 程超群, 李刚, 张文栋, 李朋伟, 胡杰, 桑胜波, 邓霄. B, P掺杂β-Si3N4的电子结构和光学性质研究.  , 2015, 64(6): 067102. doi: 10.7498/aps.64.067102
    [18] 赵立凯, 赵二俊, 武志坚. 5d过渡金属二硼化物的结构和热、力学性质的第一性原理计算.  , 2013, 62(4): 046201. doi: 10.7498/aps.62.046201
    [19] 刘春华, 欧阳楚英, 嵇英华. 第一性原理计算Mg2Ni氢化物的电子结构及其稳定性分析.  , 2011, 60(7): 077103. doi: 10.7498/aps.60.077103
    [20] 苏锐, 何捷, 陈家胜, 郭英杰. 金红石相VO2电子结构与光电性质的第一性原理研究.  , 2011, 60(10): 107101. doi: 10.7498/aps.60.107101
计量
  • 文章访问数:  4437
  • PDF下载量:  88
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-25
  • 修回日期:  2022-05-04
  • 上网日期:  2022-09-19
  • 刊出日期:  2022-10-05

/

返回文章
返回
Baidu
map