Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Dzyaloshinsky-Moriya interaction in -(Zn, Cr)S(111) surface: First principle calculations

Li Xiao-Ying Huang Can Zhu Yan Li Jin-Bin Fan Ji-Yu Pan Yan-Fei Shi Da-Ning Ma Chun-Lan

Citation:

Dzyaloshinsky-Moriya interaction in -(Zn, Cr)S(111) surface: First principle calculations

Li Xiao-Ying, Huang Can, Zhu Yan, Li Jin-Bin, Fan Ji-Yu, Pan Yan-Fei, Shi Da-Ning, Ma Chun-Lan
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • According to density functional theory calculations, we elucidate the atomic and electronic structure of -(Zn, Cr)S(111) surface. The magnetic interaction between Cr atoms is via S atoms close to the Cr layer. This interaction is shown by the analysis of spin charge contour plot and partial density of states (DOS) of each atom. The DOSs of other S atoms are non magnetic and have no magnetic exchange with the Cr layer. E(q) and E(-q) are the dispersions between energy E and wave vector q of spin spiral in the opposite directions. They are calculated with generalized Bloch equations and all the magnetic moments of Cr atoms are arranged in the plane perpendicular to the -(Zn, Cr)S(111) film. The differences between E(q) and E(-q) are caused by the interface of -(Zn, Cr)S(111), where the symmetry of space perpendicular to the film is broken. Effective Heisenberg exchange interaction (HBI) and Dzyaloshinsky-Moriya interaction (DMI) parameters between different neighbors (Ji and di) are derived by well fitting the ab initio spin spiral dispersion E(q) to HBI with DMI model and E(q)-E(-q) to DMI model, respectively. The J2 plays a major role with a large negative value of -9.04 meV. The J1 is about 2/5 of J2, and J3 is about 1/4 of J2 with positive value. The DMI d1 is -0.53 meV, and d2 is 0.07 meV. With these HBI parameters, E(0) is the largest one at which -(Zn, Cr)S(111) has no ferromagnetic interface. The E(q) has its lowest energy with the q at M=b1/2 in the first Brillouin zone. Hence, -(Zn, Cr)S(111) is an M-type antiferromagnetic (AFM) material. In this type of AFM configuration, magnetic moments of Cr atom in a line along b2 are parallel to each other, and antiparallel to the magnetic moments in adjacent lines. The E(q) at K=b1/2+ b2/2 is almost as large as that at point. The value of DMI parameter d1 is about 1/5 of that on Co/Pt3 interface and 1/2 of Co/graphene. However, it is a negative number, which shows the clockwise chirality. The -(Zn, Cr)S(111) interface has obvious DMI, and skyrmion may be formed at this transition-metal/semiconductor (TM/S) interface. It is a good option to search for DMI in different kinds of TM/S heterojunctions. The material that combines the advantage of heterojunction, and DMI may have new magnetic phenomenon, which is usefulfor the magnetic storage. This paper enriches the research on DMI.
      Corresponding author: Zhu Yan, yzhu@nuaa.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11204131, 11374159), NSF of Jiangsu Higher Education Institutions, China (Grant No. 17KJA140001), and Six Talent Peaks Project of Jiangsu, China (Grant No. XCL-078).
    [1]

    Mhlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, Georgii R, Bni P 2009 Science 323 915

    [2]

    Yu X Z, Kanazawa N, Onose Y, Kimoto K, Zhang W Z, Ishiwata S, Matsui Y, Tokura Y 2011 Nat. Mater. 10 106

    [3]

    Yu X Z, DeGrave J P, Hara T, Hara Y, Jin S, Tokura Y 2013 Nano Lett. 13 3755

    [4]

    Du H F, DeGrave J P, Xue F, Liang D, Ning W, Yang J Y, Tian M L, Zhang Y H, Jin S 2014 Nano Lett. 14 2026

    [5]

    Skyrme T H R A 1962 Nucl. Phys. 31 556

    [6]

    Honolka J, Lee T Y, Kuhnke K, Enders A, Skomski R, Bornemann S, Mankovsky S, Minr J, Staunton J, Ebert H, Hessler M, Fauth K, Schtz G, Buchsbaum A, Schmid M, Varga P, Kern K 2009 Phys. Rev. Lett. 102 067207

    [7]

    Heinze S, von Bergmann K, Menzel M, Brede J, Kubetzka A, Wiesendanger R, Bihlmayer G, Blgel S 2011 Nat. Phys. 7 713

    [8]

    Romming N, Hanneken C, Menzel M, Bickel J, Wolter B, Bergmann K V, Kubetzka A, Wiesendanger R 2013 Science 341 636

    [9]

    Sun L, Cao R X, Miao B F, Feng Z, You B, Wu D, Zhang W, Hu A, Ding H F 2013 Phys. Rev. Lett. 110 167201

    [10]

    Pollard S D, Garlow J A, Yu J, Wang Z, Zhu Y, Yang H 2017 Nat. Commun. 8 14761

    [11]

    Wells A W J, Shepley P M, Marrows C H, Moore T A 2017 Phys. Rev. B 95 054428

    [12]

    Hellman F, Hoffmann A, Tserkovnyak Y, Beach G S D, Fullerton E E, Leighton C, MacDonald A H, Ralph D C, Arena D A, Drr H A, Fischer P, Grollier J, Heremans J P, Jungwirth T, Kimmel A V, Koopmans B, Krivorotov I N, May S J, Petford-Long A K, Rondinelli J M, Samarth N, Schuller I K, Slavin A N, Stiles M D, Tchernyshyov O, Thiaville A, Zink B L 2017 Rev. Mod. Phys. 89 025006

    [13]

    Nagaosa N, Tokura Y 2013 Nat. Nanotech. 8 899

    [14]

    Dzyaloshinskii I 1958 J. Phys. Chem. Solids 4 241

    [15]

    Moriya T 1960 Phys. Rev. 120 91

    [16]

    Shu L, Chen Y G, Chen H 2002 Acta Phys. Sin. 51 902 (in Chinese) [殳蕾,陈宇光,陈鸿 2002 51 902]

    [17]

    Cai Z, Lu W B, Liu Y J 2008 Acta Phys. Sin. 57 7267 (in Chinese) [蔡卓,陆文彬,刘拥军 2008 57 7267]

    [18]

    Zhang Y L, Zhou B 2011 Acta Phys. Sin. 60 120301 (in Chinese) [张丽英,周斌 2011 60 120301]

    [19]

    Luo Y M, Zhou C, Won C, Wu Y Z 2014 AIP Adv. 4 047136

    [20]

    Fert A, Cros V, Sampaio J 2013 Nat. Nanotech. 8 152

    [21]

    Mnzer W, Neubauer A, Adams T, Mhlbauer S, Franz C, Jonietz F, Georgii R, Bni P, Pedersen B, Schmidt M, Rosch A, Pfleiderer C 2010 Phys. Rev. B 81 041203

    [22]

    Tonomura A, Yu X, Yanagisawa K, Matsuda T, Onose Y, Kanazawa N, Park H S, Tokura Y 2012 Nano Lett. 12 1673

    [23]

    Miao B F, Sun L, Wu Y W, Tao X D, Xiong X, Wen Y, Cao R X, Wang P, Wu D, Zhan Q F, You B, Du J, Li R W, Ding H F 2014 Phys. Rev. B 90 174411

    [24]

    Dai Y Y, Wang H, Tao P, Yang T, Ren W J, Zhang Z D 2013 Phys. Rev. B 88 054403

    [25]

    Xie K X, Sang H 2014 J. Appl. Phys. 116 223901

    [26]

    Jiang W J, Upadhyaya P, Zhang W, Yu G Q, Pear J E 2015 Science 349 283

    [27]

    Luchaire C M, Moutafis C, Reyren N, Sampaio J, Vaz C A F, van Horne N, Bouzehouane K, Garcia K, Deranlot C, Warnicke P, Wohlhter P, George J M, Weigand M, Raabe J, Cros V, Fert A 2016 Nat. Nanotech. 11 444

    [28]

    Boulle O, Vogel J, Yang H X, Pizzini S, Chaves D D S, Locatelli A, Menteș T O, Sala A, Buda-Prejbeanu L D, Klein O, Belmeguenai M, Roussign Y, Stashkevich A, Chrif S M, Aballe L, Foerster M, Chshiev M, Auffret S, Miron I M, Gaudin G 2016 Nat. Nanotech. 11 449

    [29]

    Woo S, Litzius K, Krger B, Im M Y, Caretta L, Richter K, Mann M, Krone A, Reeve R M, Weigand M, Agrawal P, Lemesh I, Mawass M A, Fischer P, Klui M, Beach G S D 2016 Nat. Mater. 15 501

    [30]

    Fert A, Reyren N, Cros V 2017 Nat. Rev. Mater. 2 17031

    [31]

    Yang H X, Chen G, Cotta A A C, Alpha T, Diaye N, Nikolaev S A, Soares E A, Macedo W A A, Schmid A K, Fert A, Chshiev M 2017 ArXiv 1704 09023

    [32]

    Sanvito S, Hill N A 2001 Phys. Rev. Lett. 87 267202

    [33]

    Fan S W, Yao K L, Liu Z L 2009 Appl. Phys. Lett. 94 152506

    [34]

    Saito H, Zayets V, Yamagata S, Ando K 2003 Phys. Rev. Lett. 90 207202

    [35]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [36]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [37]

    Yang H X, Boulle O, Cros V, Fert A, Chshiev M 2016 ArXiv 1603 01847

    [38]

    Zhu Y, Ma C L, Shi D N, Zhang K C 2014 Phys. Lett. A 378 2234

    [39]

    Yang H, Thiaville A, Rohart S, Fert A, Chshiev M 2015 Phys. Rev. Lett. 115 267210

    [40]

    Pan Y, Zhu Y, Shi D N, Wei X Y, Ma C L, Zhang K C 2015 J. Alloys Compd. 644 341

    [41]

    Marsman M, Hafner J 2002 Phys. Rev. B 66 224409

    [42]

    Hobbs D, Kresse G, Hafner J 2000 Phys. Rev. B 62 11556

    [43]

    Mryasov O N, Lichtenstein A I, Sandratskii L M, Gubanov V A 1991 J. Phys. Condens. Matter 3 8565

    [44]

    Knpfle K, Sandratskii L M, Kbler J 2000 Phys. Rev. B 62 5564

    [45]

    Emori S, Bauer U, Ahn S M, Martinez E, Beach G S 2013 Nat. Mater. 12 611

    [46]

    Zhang X, Zhou Y, Ezawa M 2016 Sci. Rep. 6 24795

    [47]

    Barker J, Tretiakov O A 2016 Phys. Rev. Lett. 116 147203

    [48]

    Dup B, Hoffmann M, Paillard C, Heinze S 2014 Nat. Commun. 5 4030

    [49]

    Hu X X, Zhao J, Gao W 2017 Chin.Phys. B 26 079101

    [50]

    Shang J X, Liu K, Wang F H 2017 Acta Phy. Sin. 66 216801

  • [1]

    Mhlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, Georgii R, Bni P 2009 Science 323 915

    [2]

    Yu X Z, Kanazawa N, Onose Y, Kimoto K, Zhang W Z, Ishiwata S, Matsui Y, Tokura Y 2011 Nat. Mater. 10 106

    [3]

    Yu X Z, DeGrave J P, Hara T, Hara Y, Jin S, Tokura Y 2013 Nano Lett. 13 3755

    [4]

    Du H F, DeGrave J P, Xue F, Liang D, Ning W, Yang J Y, Tian M L, Zhang Y H, Jin S 2014 Nano Lett. 14 2026

    [5]

    Skyrme T H R A 1962 Nucl. Phys. 31 556

    [6]

    Honolka J, Lee T Y, Kuhnke K, Enders A, Skomski R, Bornemann S, Mankovsky S, Minr J, Staunton J, Ebert H, Hessler M, Fauth K, Schtz G, Buchsbaum A, Schmid M, Varga P, Kern K 2009 Phys. Rev. Lett. 102 067207

    [7]

    Heinze S, von Bergmann K, Menzel M, Brede J, Kubetzka A, Wiesendanger R, Bihlmayer G, Blgel S 2011 Nat. Phys. 7 713

    [8]

    Romming N, Hanneken C, Menzel M, Bickel J, Wolter B, Bergmann K V, Kubetzka A, Wiesendanger R 2013 Science 341 636

    [9]

    Sun L, Cao R X, Miao B F, Feng Z, You B, Wu D, Zhang W, Hu A, Ding H F 2013 Phys. Rev. Lett. 110 167201

    [10]

    Pollard S D, Garlow J A, Yu J, Wang Z, Zhu Y, Yang H 2017 Nat. Commun. 8 14761

    [11]

    Wells A W J, Shepley P M, Marrows C H, Moore T A 2017 Phys. Rev. B 95 054428

    [12]

    Hellman F, Hoffmann A, Tserkovnyak Y, Beach G S D, Fullerton E E, Leighton C, MacDonald A H, Ralph D C, Arena D A, Drr H A, Fischer P, Grollier J, Heremans J P, Jungwirth T, Kimmel A V, Koopmans B, Krivorotov I N, May S J, Petford-Long A K, Rondinelli J M, Samarth N, Schuller I K, Slavin A N, Stiles M D, Tchernyshyov O, Thiaville A, Zink B L 2017 Rev. Mod. Phys. 89 025006

    [13]

    Nagaosa N, Tokura Y 2013 Nat. Nanotech. 8 899

    [14]

    Dzyaloshinskii I 1958 J. Phys. Chem. Solids 4 241

    [15]

    Moriya T 1960 Phys. Rev. 120 91

    [16]

    Shu L, Chen Y G, Chen H 2002 Acta Phys. Sin. 51 902 (in Chinese) [殳蕾,陈宇光,陈鸿 2002 51 902]

    [17]

    Cai Z, Lu W B, Liu Y J 2008 Acta Phys. Sin. 57 7267 (in Chinese) [蔡卓,陆文彬,刘拥军 2008 57 7267]

    [18]

    Zhang Y L, Zhou B 2011 Acta Phys. Sin. 60 120301 (in Chinese) [张丽英,周斌 2011 60 120301]

    [19]

    Luo Y M, Zhou C, Won C, Wu Y Z 2014 AIP Adv. 4 047136

    [20]

    Fert A, Cros V, Sampaio J 2013 Nat. Nanotech. 8 152

    [21]

    Mnzer W, Neubauer A, Adams T, Mhlbauer S, Franz C, Jonietz F, Georgii R, Bni P, Pedersen B, Schmidt M, Rosch A, Pfleiderer C 2010 Phys. Rev. B 81 041203

    [22]

    Tonomura A, Yu X, Yanagisawa K, Matsuda T, Onose Y, Kanazawa N, Park H S, Tokura Y 2012 Nano Lett. 12 1673

    [23]

    Miao B F, Sun L, Wu Y W, Tao X D, Xiong X, Wen Y, Cao R X, Wang P, Wu D, Zhan Q F, You B, Du J, Li R W, Ding H F 2014 Phys. Rev. B 90 174411

    [24]

    Dai Y Y, Wang H, Tao P, Yang T, Ren W J, Zhang Z D 2013 Phys. Rev. B 88 054403

    [25]

    Xie K X, Sang H 2014 J. Appl. Phys. 116 223901

    [26]

    Jiang W J, Upadhyaya P, Zhang W, Yu G Q, Pear J E 2015 Science 349 283

    [27]

    Luchaire C M, Moutafis C, Reyren N, Sampaio J, Vaz C A F, van Horne N, Bouzehouane K, Garcia K, Deranlot C, Warnicke P, Wohlhter P, George J M, Weigand M, Raabe J, Cros V, Fert A 2016 Nat. Nanotech. 11 444

    [28]

    Boulle O, Vogel J, Yang H X, Pizzini S, Chaves D D S, Locatelli A, Menteș T O, Sala A, Buda-Prejbeanu L D, Klein O, Belmeguenai M, Roussign Y, Stashkevich A, Chrif S M, Aballe L, Foerster M, Chshiev M, Auffret S, Miron I M, Gaudin G 2016 Nat. Nanotech. 11 449

    [29]

    Woo S, Litzius K, Krger B, Im M Y, Caretta L, Richter K, Mann M, Krone A, Reeve R M, Weigand M, Agrawal P, Lemesh I, Mawass M A, Fischer P, Klui M, Beach G S D 2016 Nat. Mater. 15 501

    [30]

    Fert A, Reyren N, Cros V 2017 Nat. Rev. Mater. 2 17031

    [31]

    Yang H X, Chen G, Cotta A A C, Alpha T, Diaye N, Nikolaev S A, Soares E A, Macedo W A A, Schmid A K, Fert A, Chshiev M 2017 ArXiv 1704 09023

    [32]

    Sanvito S, Hill N A 2001 Phys. Rev. Lett. 87 267202

    [33]

    Fan S W, Yao K L, Liu Z L 2009 Appl. Phys. Lett. 94 152506

    [34]

    Saito H, Zayets V, Yamagata S, Ando K 2003 Phys. Rev. Lett. 90 207202

    [35]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [36]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [37]

    Yang H X, Boulle O, Cros V, Fert A, Chshiev M 2016 ArXiv 1603 01847

    [38]

    Zhu Y, Ma C L, Shi D N, Zhang K C 2014 Phys. Lett. A 378 2234

    [39]

    Yang H, Thiaville A, Rohart S, Fert A, Chshiev M 2015 Phys. Rev. Lett. 115 267210

    [40]

    Pan Y, Zhu Y, Shi D N, Wei X Y, Ma C L, Zhang K C 2015 J. Alloys Compd. 644 341

    [41]

    Marsman M, Hafner J 2002 Phys. Rev. B 66 224409

    [42]

    Hobbs D, Kresse G, Hafner J 2000 Phys. Rev. B 62 11556

    [43]

    Mryasov O N, Lichtenstein A I, Sandratskii L M, Gubanov V A 1991 J. Phys. Condens. Matter 3 8565

    [44]

    Knpfle K, Sandratskii L M, Kbler J 2000 Phys. Rev. B 62 5564

    [45]

    Emori S, Bauer U, Ahn S M, Martinez E, Beach G S 2013 Nat. Mater. 12 611

    [46]

    Zhang X, Zhou Y, Ezawa M 2016 Sci. Rep. 6 24795

    [47]

    Barker J, Tretiakov O A 2016 Phys. Rev. Lett. 116 147203

    [48]

    Dup B, Hoffmann M, Paillard C, Heinze S 2014 Nat. Commun. 5 4030

    [49]

    Hu X X, Zhao J, Gao W 2017 Chin.Phys. B 26 079101

    [50]

    Shang J X, Liu K, Wang F H 2017 Acta Phy. Sin. 66 216801

  • [1] Liu Jun-Ling, Bai Yu-Jie, Xu Ning, Zhang Qin-Fang. First-principles study on electronic structure of GaS/Mg(OH)2 heterostructure. Acta Physica Sinica, 2024, 73(13): 137103. doi: 10.7498/aps.73.20231979
    [2] Zhu Kai, Huang Can, Cao Bang-Jie, Pan Yan-Fei, Fan Ji-Yu, Ma Chun-Lan, Zhu Yan. First-principles study of role of Kitaev interaction in monolayer 1T-CoI2. Acta Physica Sinica, 2023, 72(24): 247101. doi: 10.7498/aps.72.20230909
    [3] Deng Lin-Mei, Si Jun-Shan, Wu Xu-Cai, Zhang Wei-Bing. Study of transition metal dichalcogenides/chromium trihalides van der Waals heterostructure by band unfolding method. Acta Physica Sinica, 2022, 71(14): 147101. doi: 10.7498/aps.71.20220326
    [4] Fang Xiao-Nan, Du Yan-Ling, Wu Chen-Yu, Liu Jing. First principle study of tuning metal-insulator transition and magnetic properties of (SrVO3)5/(SrTiO3)1 (111) heterostructures. Acta Physica Sinica, 2022, 71(18): 187301. doi: 10.7498/aps.71.20220627
    [5] Yao Yi-Zhou, Cao Dan, Yan Jie, Liu Xue-Yin, Wang Jian-Feng, Jiang Zhou-Ting, Shu Hai-Bo. A first-principles study on environmental stability and optoelectronic properties of bismuth oxychloride/ cesium lead chloride van der Waals heterojunctions. Acta Physica Sinica, 2022, 71(19): 197901. doi: 10.7498/aps.71.20220544
    [6] Yao Wen-Qian, Sun Jian-Zhe, Chen Jian-Yi, Guo Yun-Long, Wu Bin, Liu Yun-Qi. Controllable preparation and photoelectric applications of two-dimensional in-plane and van der Waals heterostructures. Acta Physica Sinica, 2021, 70(2): 027901. doi: 10.7498/aps.70.20201419
    [7] Bai Liang, Zhao Qi-Xu, Shen Jian-Wei, Yang Yan, Yuan Qing-Hong, Zhong Cheng, Sun Hai-Tao, Sun Zhen-Rong. Computational screening of photocathodes based on layered MXene coated Cs3Sb heterostructures. Acta Physica Sinica, 2021, 70(21): 218504. doi: 10.7498/aps.70.20210956
    [8] Ma Hao-Hao, Zhang Xian-Bin, Wei Xu-Yan, Cao Jia-Meng. Theoretical study on Schottky regulation of WSe2/graphene heterostructure doped with nonmetallic elements. Acta Physica Sinica, 2020, 69(11): 117101. doi: 10.7498/aps.69.20200080
    [9] Guo Li-Juan, Hu Ji-Song, Ma Xin-Guo, Xiang Ju. Interfacial interaction and Schottky contact of two-dimensional WS2/graphene heterostructure. Acta Physica Sinica, 2019, 68(9): 097101. doi: 10.7498/aps.68.20190020
    [10] Meng Kang-Kang, Zhao Xu-Peng, Miao Jun, Xu Xiao-Guang, Zhao Jian-Hua, Jiang Yong. Topological Hall effect in ferromagnetic/non-ferromagnetic metals heterojunctions. Acta Physica Sinica, 2018, 67(13): 131202. doi: 10.7498/aps.67.20180369
    [11] Zhang Lei. Critical behaviors of helimagnetic ordering systems relating to skyrmion. Acta Physica Sinica, 2018, 67(13): 137501. doi: 10.7498/aps.67.20180137
    [12] Liang Xue, Zhao Li, Qiu Lei, Li Shuang, Ding Li-Hong, Feng You-Hua, Zhang Xi-Chao, Zhou Yan, Zhao Guo-Ping. Skyrmions-based magnetic racetrack memory. Acta Physica Sinica, 2018, 67(13): 137510. doi: 10.7498/aps.67.20180764
    [13] Dong Bo-Wen, Zhang Jing-Yan, Peng Li-Cong, He Min, Zhang Ying, Zhao Yun-Chi, Wang Chao, Sun Yang, Cai Jian-Wang, Wang Wen-Hong, Wei Hong-Xiang, Shen Bao-Gen, Jiang Yong, Wang Shou-Guo. Multi-field control on magnetic skyrmions. Acta Physica Sinica, 2018, 67(13): 137507. doi: 10.7498/aps.67.20180931
    [14] Xia Jing, Han Zong-Yi, Song Yi-Fan, Jiang Wen-Jing, Lin Liu-Rong, Zhang Xi-Chao, Liu Xiao-Xi, Zhou Yan. Overview of magnetic skyrmion-based devices and applications. Acta Physica Sinica, 2018, 67(13): 137505. doi: 10.7498/aps.67.20180894
    [15] Zhao Wei-Sheng, Huang Yang-Qi, Zhang Xue-Ying, Kang Wang, Lei Na, Zhang You-Guang. Overview and advances in skyrmionics. Acta Physica Sinica, 2018, 67(13): 131205. doi: 10.7498/aps.67.20180554
    [16] Yang Yang, Wang An-Min, Cao Lian-Zhen, Zhao Jia-Qiang, Lu Huai-Xin. Correlation and coherence for two-qubit system coupled to XY spin chains. Acta Physica Sinica, 2018, 67(15): 150302. doi: 10.7498/aps.67.20180812
    [17] Xuan Sheng-Jie, Liu Yan. Control of skyrmion movement in nanotrack by using periodic strain. Acta Physica Sinica, 2018, 67(13): 137503. doi: 10.7498/aps.67.20180031
    [18] Huang Can, Li Xiao-Ying, Zhu Yan, Pan Yan-Fei, Fan Ji-Yu, Shi Da-Ning, Ma Chun-Lan. First principle study of weak Dzyaloshinsky-Moriya interaction in Co/BN surface. Acta Physica Sinica, 2018, 67(11): 117102. doi: 10.7498/aps.67.20180337
    [19] Cao Ning-Tong, Zhang Lei, Lü Lu, Xie Hai-Peng, Huang Han, Niu Dong-Mei, Gao Yong-Li. van der Waals heterostructure about CuPc/MoS2(0001). Acta Physica Sinica, 2014, 63(16): 167903. doi: 10.7498/aps.63.167903
    [20] Zhang Hai-Bo, Wang Zhi-Guo, Zu Xiao-Tao, Yang Ding-Yu, Zhu Xing-Hua. First principles study of electronic properties of carbon/silicon carbide nanotube heterojunction. Acta Physica Sinica, 2010, 59(11): 7961-7965. doi: 10.7498/aps.59.7961
Metrics
  • Abstract views:  6911
  • PDF Downloads:  325
  • Cited By: 0
Publishing process
  • Received Date:  20 February 2018
  • Accepted Date:  21 April 2018
  • Published Online:  05 July 2018

/

返回文章
返回
Baidu
map