Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Discrete optimal control for Birkhoffian systems and its application to rendezvous and docking of spacecrafts

Kong Xin-Lei Wu Hui-Bin

Citation:

Discrete optimal control for Birkhoffian systems and its application to rendezvous and docking of spacecrafts

Kong Xin-Lei, Wu Hui-Bin
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In general, optimal control problems rely on numerically rather than analytically solving methods, due to their nonlinearities. The direct method, one of the numerically solving methods, is mainly to transform the optimal control problem into a nonlinear optimization problem with finite dimensions, via discretizing the objective functional and the forced dynamical equations directly. However, in the procedure of the direct method, the classical discretizations of the forced equations will reduce or affect the accuracy of the resulting optimization problem as well as the discrete optimal control. In view of this fact, more accurate and efficient numerical algorithms should be employed to approximate the forced dynamical equations. As verified, the discrete variational difference schemes for forced Birkhoffian systems exhibit excellent numerical behaviors in terms of high accuracy, long-time stability and precise energy prediction. Thus, the forced dynamical equations in optimal control problems, after being represented as forced Birkhoffian equations, can be discretized according to the discrete variational difference schemes for forced Birkhoffian systems. Compared with the method of employing traditional difference schemes to discretize the forced dynamical equations, this way yields faithful nonlinear optimization problems and consequently gives accurate and efficient discrete optimal control. Subsequently, in the paper we are to apply the proposed method of numerically solving optimal control problems to the rendezvous and docking problem of spacecrafts. First, we make a reasonable simplification, i.e., the rendezvous and docking process of two spacecrafts is reduced to the problem of optimally transferring the chaser spacecraft with a continuously acting force from one circular orbit around the Earth to another one. During this transfer, the goal is to minimize the control effort. Second, the dynamical equations of the chaser spacecraft are represented as the form of the forced Birkhoffian equation. Then in this case, the discrete variational difference scheme for forced Birkhoffian system can be employed to discretize the chaser spacecraft's equations of motion. With further discretizing the control effort and the boundary conditions, the resulting nonlinear optimization problem is obtained. Finally, the optimization problem is solved directly by the nonlinear programming method and then the discrete optimal control is achieved. The obtained optimal control is efficient enough to realize the rendezvous and docking process, even though it is only an approximation of the continuous one. Simulation results fully verify the efficiency of the proposed method for numerically solving optimal control problems, if the fact that the time step is chosen to be very large to limit the dimension of the optimization problem is noted.
      Corresponding author: Kong Xin-Lei, kongxinlei@ncut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11602002, 11672032), the Outstanding Talents Program of Beijing (Grant No. 2015000020124G025), and the Excellent Young Teachers Program of North China University of Technology (Grant No. XN072-041).
    [1]

    Mei F X, Shi R C, Zhang Y F, Wu H B 1996 Dynamics of Birkhoff System (Beijing: Beijing Institute of Technology Press) (in Chinese) [梅凤翔, 史荣昌, 张永发, 吴惠彬 1996 Birkhoff 系统动力学 (北京: 北京理工大学出版社)]

    [2]

    Cui J C, Song D, Guo Y X 2012 Acta Phys. Sin. 61 244501 (in Chinese) [崔金超, 宋端, 郭永新 2012 61 244501]

    [3]

    Cui J C, Zhao Z, Guo Y X 2013 Acta Phys. Sin. 62 090205 (in Chinese) [崔金超, 赵喆, 郭永新 2013 62 090205]

    [4]

    Zhang Y 2010 Commun. Theor. Phys. 53 166

    [5]

    Zhai X H, Zhang Y 2014 Nonlinear Dyn. 77 73

    [6]

    Zhang Y 2010 Chin. Phys. B 19 080301

    [7]

    Kong X L, Wu H B, Mei F X 2012 J. Geom. Phys. 62 1157

    [8]

    Liu S X, Liu C, Guo Y X 2011 Acta Phys. Sin. 60 064501 (in Chinese) [刘世兴, 刘畅, 郭永新 2011 60 064501]

    [9]

    Liu S X, Hua W, Guo Y X 2014 Chin. Phys. B 23 064501

    [10]

    Mei F X, Wu H B 2015 Chin. Phys. B 24 104502

    [11]

    Mei F X, Wu H B 2015 Chin. Phys. B 24 054501

    [12]

    Sun Y J, Shang Z J 2005 Phys. Lett. A 336 358

    [13]

    Su H L, Sun Y J, Qin M Z, Scherer R 2007 Int. J. Pure Appl. Math. 40 341

    [14]

    Kong X L, Wu H B, Mei F X 2016 Chin. Phys. B 25 010203

    [15]

    Liu C 2012 Ph. D. Dissertation (Beijing: Beijing Institue of Technology) (in Chinese) [刘畅 2012 博士学位论文 (北京: 北京理工大学)]

    [16]

    Kong X L, Wu H B, Mei F X 2013 Appl. Math. Comp. 225 326

    [17]

    Kong X L, Wu H B, Mei F X 2013 Nonlinear Dyn. 74 711

    [18]

    Gill P E, Jay L O, Leonard M W, Petzold L R, Sharma V 2000 J. Comput. Appl. Math. 120 197

    [19]

    Zhang Y 2008 Chin. Phys. B 17 4365

    [20]

    Marsden J E, Ratiu T S 1999 Introduction to Mechanics and Symmetry (New York: Springer)

  • [1]

    Mei F X, Shi R C, Zhang Y F, Wu H B 1996 Dynamics of Birkhoff System (Beijing: Beijing Institute of Technology Press) (in Chinese) [梅凤翔, 史荣昌, 张永发, 吴惠彬 1996 Birkhoff 系统动力学 (北京: 北京理工大学出版社)]

    [2]

    Cui J C, Song D, Guo Y X 2012 Acta Phys. Sin. 61 244501 (in Chinese) [崔金超, 宋端, 郭永新 2012 61 244501]

    [3]

    Cui J C, Zhao Z, Guo Y X 2013 Acta Phys. Sin. 62 090205 (in Chinese) [崔金超, 赵喆, 郭永新 2013 62 090205]

    [4]

    Zhang Y 2010 Commun. Theor. Phys. 53 166

    [5]

    Zhai X H, Zhang Y 2014 Nonlinear Dyn. 77 73

    [6]

    Zhang Y 2010 Chin. Phys. B 19 080301

    [7]

    Kong X L, Wu H B, Mei F X 2012 J. Geom. Phys. 62 1157

    [8]

    Liu S X, Liu C, Guo Y X 2011 Acta Phys. Sin. 60 064501 (in Chinese) [刘世兴, 刘畅, 郭永新 2011 60 064501]

    [9]

    Liu S X, Hua W, Guo Y X 2014 Chin. Phys. B 23 064501

    [10]

    Mei F X, Wu H B 2015 Chin. Phys. B 24 104502

    [11]

    Mei F X, Wu H B 2015 Chin. Phys. B 24 054501

    [12]

    Sun Y J, Shang Z J 2005 Phys. Lett. A 336 358

    [13]

    Su H L, Sun Y J, Qin M Z, Scherer R 2007 Int. J. Pure Appl. Math. 40 341

    [14]

    Kong X L, Wu H B, Mei F X 2016 Chin. Phys. B 25 010203

    [15]

    Liu C 2012 Ph. D. Dissertation (Beijing: Beijing Institue of Technology) (in Chinese) [刘畅 2012 博士学位论文 (北京: 北京理工大学)]

    [16]

    Kong X L, Wu H B, Mei F X 2013 Appl. Math. Comp. 225 326

    [17]

    Kong X L, Wu H B, Mei F X 2013 Nonlinear Dyn. 74 711

    [18]

    Gill P E, Jay L O, Leonard M W, Petzold L R, Sharma V 2000 J. Comput. Appl. Math. 120 197

    [19]

    Zhang Y 2008 Chin. Phys. B 17 4365

    [20]

    Marsden J E, Ratiu T S 1999 Introduction to Mechanics and Symmetry (New York: Springer)

  • [1] Zhang Yi. Mei’s symmetry theorems for non-migrated Birkhoffian systems on a time scale. Acta Physica Sinica, 2021, 70(24): 244501. doi: 10.7498/aps.70.20210372
    [2] Cao Xiao-Qun. Optimal control for a chaotic system by means of Gauss pseudospectral method. Acta Physica Sinica, 2013, 62(23): 230505. doi: 10.7498/aps.62.230505
    [3] Ge Wei-Kuan, Zhang Yi, Lou Zhi-Mei. Infinitesimal canonical transformation and integral for a generalized Birkhoff system. Acta Physica Sinica, 2012, 61(14): 140204. doi: 10.7498/aps.61.140204
    [4] Ding Guang-Tao. Effects of gauge transformations on symmetries of Birkhoffian system. Acta Physica Sinica, 2009, 58(11): 7431-7435. doi: 10.7498/aps.58.7431
    [5] Zhang Yi. Parametric equations and its first integrals for Birkhoffian systems in the event space. Acta Physica Sinica, 2008, 57(5): 2649-2653. doi: 10.7498/aps.57.2649
    [6] Zhang Yi. Routh method of reduction of Birkhoffian systems. Acta Physica Sinica, 2008, 57(9): 5374-5377. doi: 10.7498/aps.57.5374
    [7] Zhang Yi. Noether’s theory for Birkhoffian systems in the event space. Acta Physica Sinica, 2008, 57(5): 2643-2648. doi: 10.7498/aps.57.2643
    [8] Ge Wei_Kuan, Mei Feng_Xiang. Time-integral theorems for Birkhoff systems. Acta Physica Sinica, 2007, 56(5): 2479-2481. doi: 10.7498/aps.56.2479
    [9] Zhang Peng-Yu, Fang Jian-Hui. Lie symmetry and non-Noether conserved quantities of variable mass Birkhoffian system. Acta Physica Sinica, 2006, 55(8): 3813-3816. doi: 10.7498/aps.55.3813
    [10] Zhang Yi. A new type of adiabatic invariants for Birkhoffian system. Acta Physica Sinica, 2006, 55(8): 3833-3837. doi: 10.7498/aps.55.3833
    [11] Zheng Shi-Wang, Jia Li-Qun. Local energy integral of Birkhoffian systems. Acta Physica Sinica, 2006, 55(11): 5590-5593. doi: 10.7498/aps.55.5590
    [12] Zhang Yi, Mei Feng-Xiang. Effects of constraints on Noether symmetries and conserved quantities in a Birkhoffian system. Acta Physica Sinica, 2004, 53(8): 2419-2423. doi: 10.7498/aps.53.2419
    [13] Zhang Yi, Fan Cun-Xin, Ge Wei-Kuan. A new type of conserved quantities for Birkhoffian systems*. Acta Physica Sinica, 2004, 53(11): 3644-3647. doi: 10.7498/aps.53.3644
    [14] Zhang Yi. Geometric foundations of Hojman theorem\=for Birkhoffian systems. Acta Physica Sinica, 2004, 53(12): 4026-4028. doi: 10.7498/aps.53.4026
    [15] Liu Ding, Qian Fu-Cai, Ren Hai-Peng, Kong Zhi-Qiang. Energy minimization control for a discrete chaotic system. Acta Physica Sinica, 2004, 53(7): 2074-2079. doi: 10.7498/aps.53.2074
    [16] Luo Shao-Kai, Lu Yi-Bing, Zhou Qiang, Wang Ying-De, Oyang Shi. . Acta Physica Sinica, 2002, 51(9): 1913-1917. doi: 10.7498/aps.51.1913
    [17] Zhang Yi. . Acta Physica Sinica, 2002, 51(3): 461-464. doi: 10.7498/aps.51.461
    [18] Zhang Yi. . Acta Physica Sinica, 2002, 51(8): 1666-1670. doi: 10.7498/aps.51.1666
    [19] Fu Jing-Li, Chen Li-Qun, Xue Yun, Luo Shao-Kai. Stability of the equilibrium state in relativistic Birkhoff systems*. Acta Physica Sinica, 2002, 51(12): 2683-2689. doi: 10.7498/aps.51.2683
    [20] FU JING-LI, CHEN LI-QUN, LUO SHAO-KAI, CHEN XIANG-WEI, WANG XIN-MIN. STUDY ON DYNAMICS OF RELATIVISTIC BIRKHOFF SYSTEMS. Acta Physica Sinica, 2001, 50(12): 2289-2295. doi: 10.7498/aps.50.2289
Metrics
  • Abstract views:  5299
  • PDF Downloads:  160
  • Cited By: 0
Publishing process
  • Received Date:  26 October 2016
  • Accepted Date:  25 December 2016
  • Published Online:  05 April 2017

/

返回文章
返回
Baidu
map