-
铝基复合材料在加入颗粒相之后, 延伸率和塑性变形能力明显降低. 为改善其塑性变形能力, 通过对比强脉冲磁场冲击处理前后试样内部组织和残余应力的变化特征, 研究了磁致塑性效应对铝基复合材料塑性变形能力的影响机理. 结果表明: 当磁感应强度从2 T变化到4 T时, 铝基复合材料中位错密度显著增加, 4 T时的位错密度是未加磁场时的3.1倍; 3 T, 30个脉冲处理后的复合材料中残余应力值从未加磁场时的41 MPa减小为-1 MPa. 从原子尺度来看, 强磁场导致了磁致塑性效应, 从而引起了位错的运动, 并促进了位错的退钉扎和可移动位错数量的增加; 从材料内部整体结构变化来看, 磁场加速了材料内应力的释放速率, 降低了材料内部的残余应力, 从而改善了铝基复合材料的塑性变形能力.For aluminum matrix composite, the introduced particles will strengthen the matrix, but as the obstacles, the heterogeneous particles will hinder the dislocation movement, generate uneven material structure, and may become a source of stress concentration. Therefore, they are detrimental severely to the elongation and plasticity of composite. It is known that dislocations exhibit a paramagnetic behavior because they contain paramagnetic centers including localized electrons, holes, triplet excitons, ion radicals, etc. The initial radical pair of the dislocation-obstacle S (spin angular momentum) = ± 1/2 is in a singlet state, and the total spin of the radical pair is 0 and in the antiparallel spin direction, offsetting a magnetism of the radical pair. The magnetic field can change the spin direction from singlet state to triplet state. In the triplet state the electron spin is 1 and in the same spin direction. A strong bond of the dislocation-obstacle is formed only in the singlet state when the spins of the two electrons are antiparallel. So an obstacle is able to pin a dislocation only if the radical pair is in the singlet state. Under the condition of high pulsed magnetic field treatment (HPMFT) the conversion of electronic spin will be a fundamental cause of dislocation motion along a glide plane. The movement of pinned dislocations will change the material microstructure and influence the performance of material. By comparing the microstructural evolutions and the residual stresses of samples subjected to HPMFT with different values of magnetic induced density (B), the positive influence of magnetoplastic effect on the plasticity of aluminum matrix composite is investigated in this paper. The results show that the dislocation density is significantly increased when B changes from 2 T to 4 T. When B=4 T the dislocation density is enhanced by 3.1 times compared with that of the sample without HPMFT. Moreover, the residual stress is reduced apparently from 41 MPa (B=0) to -1 MPa (B=3 T). In the view of atomic scale, the high magnetic field leads to a magnetoplastic effect which contributes to the dislocation movement and promotes the dislocation depinning, thereafter, the number of movable dislocations increases up. From the viewing of the internal structure of composite, the magnetic field accelerates the releasing rate of internal stress and lowers the residual stress in material, which is beneficial to improving the plasticity of aluminum matrix composite.
-
Keywords:
- magnetoplastic effect /
- microstructural evolution /
- aluminum matrix composites /
- high pulsed magnetic field
[1] Molotskii M I 2000 Mat. Sci. Eng. A 287 248
[2] Golovin Y 2004 Phys. Solid State 46 789
[3] Li H Q, Chen Q Z, Wang Y B, Chu W Y 1997 Chin. Sci. Bull. 42 2282 (in Chinese) [李红旗, 陈奇志, 王燕斌, 褚武扬 1997 科学通报 42 2282]
[4] Liu Z L, Hu H Y, Fan T Y 2007 Trans. Beijing Ins. Technol. 27 113 (in Chinese) [刘兆龙, 胡海云, 范天佑 2007 北京理工大学学报 27 113]
[5] Hutchinson B, Ridley N 2006 Scripta Mater. 55 299
[6] Li J H, Gao X X, Zhu J, Li J, Zhang Y F, Zhang M C 2009 J. Funct. Mater. 8 1251 (in Chinese) [李纪恒, 高学绪, 朱洁, 李洁, 张亚飞, 张茂才 2009 功能材料 8 1251]
[7] Li L, Wang X, Shan B W 2012 Application of Atomism in Material Science (Harbin: Harbin Institute of Technology Press) p184 (in Chinese) [李莉, 王香, 山本悟 2012 原子论在材料科学中的应用 (哈尔滨市: 哈尔滨工业大学出版社) 第184页]
[8] Wang H M, Li G R, Zhao Y T, Chen G 2010 Mat. Sci. Eng. A 527 2881
[9] Li G R, Wang H M, Zhao Y T, Chen D B, Chen G, Cheng X N 2010 Trans. Nonferrous Met. Soc. China 20 577
[10] Zhang Q Q 2010 M. S. Dissertation (Beijing: Beijing Jiaotong University) (in Chinese) [张菁菁 2010 硕士论文 (北京: 北京交通大学)]
[11] Li G R, Zhao Y T, Wang H M, Chen G, Dai Q X, Cheng X N 2009 J. Alloys Compd. 471 530
[12] Li G R 2007 Ph. D. Dissertation (Jiangsu: Jiangsu University) (in Chinese) [李桂荣 2007 博士学位论文 (江苏: 江苏大学)]
[13] Liu P, Chen Z J 2011 J. Hefei Univ. Technol. (Nat. Sci. Ed.) 34 341 (in Chinese) [刘萍, 陈忠家 2011 合肥工业大学学报(自然科学版) 34 341]
[14] Jia R X, Zhang Y M, Zhang Y M, Guo H 2010 Spectrosc. Spect. Anal. 30 1995 (in Chinese) [贾仁需, 张玉明, 张义门, 郭辉 2010 光谱学与光谱分析 30 1995]
[15] Li P M, Wen X Z, Zhi Q L, Xi B W, Li J X, Li J, Tian F Z 2014 Mat. Sci. Eng. A 609 16
[16] Clayton J D, McDowell D L, Bammann D J 2006 Int. J. Plast. 22 210
[17] Gao Y L, Zhan L, Zhao X C, Zhang Z H, Zhuang Z, You X C 2011 Acta Phys. Sin. 60 096103 (in Chinese) [高原柳, 占立, 赵雪川, 张朝晖, 庄茁, 由小川 2011 60 096103]
[18] Li G R, Zhao Y T, Dai Q X, Zhang H J, Wang H M 2007 J. Uni. Sci. Technol. Beijing 14 460
[19] Li G R, Wang H M, Yuan X T, Cai Y 2013 Chin. J. Mater. Res. 27 397 (in Chinese) [李桂荣, 王宏明, 袁雪婷, 蔡云 2013 材料研究学报 27 397]
[20] Buchachenko A L 2006 J. Exp. Theor. Phys. 102 795
[21] Molotskii M I, Fleurov V 2000 J. Phys. Chem. B 104 3812
[22] Xu X Y, Liang M, Lu Y F, Wang P F, Jiao G F, Li C S 2014 J. Low Temp. Phys. 36 140 (in Chinese) [徐晓燕, 梁明, 卢亚锋, 王鹏飞, 焦高峰, 李成山 2014 低温 36 140]
[23] Li Z F 2008 Ph. D. Dissertation (Shanghai: Shanghai Jiaotong University) (in Chinese) [励志峰 2008 博士学位论文 (上海: 上海交通大学)]
[24] Li B, Coles P, Reimer J A, Dawson P, Meriles C A 2010 Solid State Commun. 150 450
[25] Lin J, Zhao H Y, Cai Z P, Lu A L 2005 J. Mater. Eng. 3 55 (in Chinese) [林健, 赵海燕, 蔡志鹏, 鹿安理 2005 材料工程 3 55]
[26] Wu S, Zhao H Y, Lu A L, Fang H Z 2002 Trans. China Welding Ins. 23 9 (in Chinese) [吴甦, 赵海燕, 鹿安理, 方慧珍 2002 焊接学报 23 9]
[27] Wu S, Zhao H Y, Lu A L, Fang H Z, Tang F 2002 J. Tsinghua Univ. (Nat. Sci. Ed.) 42 147 (in Chinese) [吴甦, 赵海燕, 鹿安理, 方慧珍, 唐非 2002 清华大学学报(自然科学版) 42 147]
-
[1] Molotskii M I 2000 Mat. Sci. Eng. A 287 248
[2] Golovin Y 2004 Phys. Solid State 46 789
[3] Li H Q, Chen Q Z, Wang Y B, Chu W Y 1997 Chin. Sci. Bull. 42 2282 (in Chinese) [李红旗, 陈奇志, 王燕斌, 褚武扬 1997 科学通报 42 2282]
[4] Liu Z L, Hu H Y, Fan T Y 2007 Trans. Beijing Ins. Technol. 27 113 (in Chinese) [刘兆龙, 胡海云, 范天佑 2007 北京理工大学学报 27 113]
[5] Hutchinson B, Ridley N 2006 Scripta Mater. 55 299
[6] Li J H, Gao X X, Zhu J, Li J, Zhang Y F, Zhang M C 2009 J. Funct. Mater. 8 1251 (in Chinese) [李纪恒, 高学绪, 朱洁, 李洁, 张亚飞, 张茂才 2009 功能材料 8 1251]
[7] Li L, Wang X, Shan B W 2012 Application of Atomism in Material Science (Harbin: Harbin Institute of Technology Press) p184 (in Chinese) [李莉, 王香, 山本悟 2012 原子论在材料科学中的应用 (哈尔滨市: 哈尔滨工业大学出版社) 第184页]
[8] Wang H M, Li G R, Zhao Y T, Chen G 2010 Mat. Sci. Eng. A 527 2881
[9] Li G R, Wang H M, Zhao Y T, Chen D B, Chen G, Cheng X N 2010 Trans. Nonferrous Met. Soc. China 20 577
[10] Zhang Q Q 2010 M. S. Dissertation (Beijing: Beijing Jiaotong University) (in Chinese) [张菁菁 2010 硕士论文 (北京: 北京交通大学)]
[11] Li G R, Zhao Y T, Wang H M, Chen G, Dai Q X, Cheng X N 2009 J. Alloys Compd. 471 530
[12] Li G R 2007 Ph. D. Dissertation (Jiangsu: Jiangsu University) (in Chinese) [李桂荣 2007 博士学位论文 (江苏: 江苏大学)]
[13] Liu P, Chen Z J 2011 J. Hefei Univ. Technol. (Nat. Sci. Ed.) 34 341 (in Chinese) [刘萍, 陈忠家 2011 合肥工业大学学报(自然科学版) 34 341]
[14] Jia R X, Zhang Y M, Zhang Y M, Guo H 2010 Spectrosc. Spect. Anal. 30 1995 (in Chinese) [贾仁需, 张玉明, 张义门, 郭辉 2010 光谱学与光谱分析 30 1995]
[15] Li P M, Wen X Z, Zhi Q L, Xi B W, Li J X, Li J, Tian F Z 2014 Mat. Sci. Eng. A 609 16
[16] Clayton J D, McDowell D L, Bammann D J 2006 Int. J. Plast. 22 210
[17] Gao Y L, Zhan L, Zhao X C, Zhang Z H, Zhuang Z, You X C 2011 Acta Phys. Sin. 60 096103 (in Chinese) [高原柳, 占立, 赵雪川, 张朝晖, 庄茁, 由小川 2011 60 096103]
[18] Li G R, Zhao Y T, Dai Q X, Zhang H J, Wang H M 2007 J. Uni. Sci. Technol. Beijing 14 460
[19] Li G R, Wang H M, Yuan X T, Cai Y 2013 Chin. J. Mater. Res. 27 397 (in Chinese) [李桂荣, 王宏明, 袁雪婷, 蔡云 2013 材料研究学报 27 397]
[20] Buchachenko A L 2006 J. Exp. Theor. Phys. 102 795
[21] Molotskii M I, Fleurov V 2000 J. Phys. Chem. B 104 3812
[22] Xu X Y, Liang M, Lu Y F, Wang P F, Jiao G F, Li C S 2014 J. Low Temp. Phys. 36 140 (in Chinese) [徐晓燕, 梁明, 卢亚锋, 王鹏飞, 焦高峰, 李成山 2014 低温 36 140]
[23] Li Z F 2008 Ph. D. Dissertation (Shanghai: Shanghai Jiaotong University) (in Chinese) [励志峰 2008 博士学位论文 (上海: 上海交通大学)]
[24] Li B, Coles P, Reimer J A, Dawson P, Meriles C A 2010 Solid State Commun. 150 450
[25] Lin J, Zhao H Y, Cai Z P, Lu A L 2005 J. Mater. Eng. 3 55 (in Chinese) [林健, 赵海燕, 蔡志鹏, 鹿安理 2005 材料工程 3 55]
[26] Wu S, Zhao H Y, Lu A L, Fang H Z 2002 Trans. China Welding Ins. 23 9 (in Chinese) [吴甦, 赵海燕, 鹿安理, 方慧珍 2002 焊接学报 23 9]
[27] Wu S, Zhao H Y, Lu A L, Fang H Z, Tang F 2002 J. Tsinghua Univ. (Nat. Sci. Ed.) 42 147 (in Chinese) [吴甦, 赵海燕, 鹿安理, 方慧珍, 唐非 2002 清华大学学报(自然科学版) 42 147]
计量
- 文章访问数: 7026
- PDF下载量: 726
- 被引次数: 0