Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Zero damping conditions of magnetic bilayer in microwave cavity

YIN Fan DAI Changjie ZHANG Ying YU Hailin XIAO Yang

Citation:

Zero damping conditions of magnetic bilayer in microwave cavity

YIN Fan, DAI Changjie, ZHANG Ying, YU Hailin, XIAO Yang
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • Experimental and theoretical studies have demonstrated that single magnon mode and cavity photon can be coupled coherently and dissipatively, in which the interference between two types of coupling will give rise to zero damping condition. In magnetic bilayers or multilayers, there exist more than one magnon modes which could be directly coupled by interface exchange interaction. In this work, we extend single magnon mode to two magnon modes and study the effect of two magnon modes on zero damping condition. Using eigenfrequency analysis and microwave transmission spectra, we derive analytical expressions of zero damping condition and the frequency detuning. By comparing analytical results to numerical results, we obtain the dependence of zero damping condition on system parameters. In the absence of direct interface exchange magnon-magnon coupling, the zero damping condition occurs for dissipative coupling or hybrid coupling. As the coupling strength increases, the distance between two zero damping conditions increases. For hybrid coupling, the curves become asymmetric around the point of zero detuning, which is different from pure coupling. Moreover, we study the effect of interface exchange magnon-magnon interaction on zero damping condition. The interface exchange coupling results in the splitting of microwave transmission spectra, but the zero damping condition occurs for low-frequency mode only. As the interface exchange coupling strength increases, the frequency at which the zero damping condition happens will shift to lower frequency. Due to extremely narrow line-width of microwave transmission dip at the zero damping condition, our work is expected to be useful for the design of magnon-based quantum sensing devices.
  • [1]

    Zhang X, Zou C L, Jiang L, Tang H X 2014 Phys. Rev. Lett. 113 156401

    [2]

    Soykal O O, Flattxe M E 2010 Phys. Rev. Lett. 104 077202

    [3]

    Tabuchi Y, Ishino S, Noguchi A, Ishikawa T, Yamazaki R, Usami K, Nakamura Y 2015 Science 349 405

    [4]

    Huebl H, Zollitsch C W, Lotze J, Hocke F, Greifenstein M, Marx A, Gross R, Goennenwein S T B 2013 Phys. Rev. Lett. 111 127003

    [5]

    Tabuchi Y, Ishino S, Ishikawa T, Yamazaki R, Usami K, Nakamura Y 2014 Phys. Rev. Lett. 113 083603

    [6]

    Goryachev M, Farr W G, Creedon D L, Fan Y, Kostylev M, Tobar M E 2014 Phys. Rev. Appl. 2 054002

    [7]

    Cao Y, Yan P, Huebl H, Goennenwein S T B, Bauer G E W 2015 Phys. Rev. B 91 094423

    [8]

    Bai L, Harder M, Chen Y P, Fan X, Xiao J Q, Hu C-M 2015 Phys. Rev. Lett. 114 227201

    [9]

    Bernier N R, Txoth L D, Feofanov A K, Kippenberg T J 2018 Phys. Rev. A 98 023841

    [10]

    Yu W, Wang J, Yuan H Y, Xiao J 2019 Phys. Rev. Lett. 123 227201

    [11]

    Grigoryan V L, Shen K, Xia K2018 Phys. Rev. B 98 024406

    [12]

    Wu W J, Xu D, Qian J, Li J, Wang Y P, You J Q 2022 Chin. Phys. B 31 127503

    [13]

    Bao X X, Guo G F, Yang X, Tan L 2023 Chin. Phys. B 32 080301

    [14]

    Liao Q, Peng K, Qiu H 2023 Chin. Phys. B 32 054205

    [15]

    Liu T, Zhang X, Tang H X, Flatte M E 2016 Phys. Rev. B 94 060405(R)

    [16]

    Rameshti B. Zare, Kusminskiy S. Viola, Haigh J A, Usami K, Lachance-Quirion D, Nakamura Y, Hu C.-M, Tang H X, Bauer G E, Blanter Y M 2022 Phys. Rep. 979 1

    [17]

    Harder M, Yao B, Gui Y, Hu C-M 2021 J. Appl. Phys. 129 201101

    [18]

    Yuan H, Cao Y, Kamra A, Duine R A, Yan P 2022 Phys. Rep. 965 1

    [19]

    Lachance-Quirion D, Tabuchi Y, Gloppe A, Usami K, Nakamura Y 2019 Appl. Phys. Exp. 12 070101

    [20]

    Lachance-Quirion D, Wolski S P, Tabuchi Y, Kono S, Usami K, Nakamura Y 2020 Science 367 425

    [21]

    Pan H, Yang Y, An Z, Hu Can-Ming 2022 Phys. Rev. B 106 054425

    [22]

    Hyde P, Yao B M, Gui Y S, Zhang Guo-Qiang, You J Q, Hu C-M 2018 Phys. Rev. B 98 174423

    [23]

    Bi M X, Yan X H, Xiao Y, Dai C J 2019 J. Appl. Phys. 126 173902

    [24]

    Bi M X, Yan X H, Zhang Y, Xiao Y 2021 Phys. Rev. B 103 104411

    [25]

    Wang Y-P, Zhang G-Q, Zhang D, Li T-F, Hu C-M, You J Q 2018 Phys. Rev. Lett. 120 057202

    [26]

    Sharma S, Bittencourt V A S V, Karenowska A D, Kusminskiy S V 2021 Phys. Rev. B 103 L100403

    [27]

    Hei X L, Li P B, Pan X F, Nor F 2023 Phys. Rev. Lett. 130 073602

    [28]

    Yuan H Y, Yan P, Zheng S, He Q Y, Xia K, Yung M-H 2020 Phys. Rev. Lett. 124 053602

    [29]

    Li J, Zhu S-Y, Agarwal G S 2018 Phys. Rev. Lett. 121 203601

    [30]

    Yang J, Zhao C, Wang D-W, Peng R, Zhou L 2024 Phys. Rev. Appl. 21 044056

    [31]

    Sun F X, Zheng S S, Xiao Y, Gong Q, He Q, Xia K 2021 Phys. Rev. Lett. 127 087203

    [32]

    Osada A, Hisatomi R, Noguchi A, Tabuchi Y, Yamazaki R, Usami K, Sadgrove M, Yalla R, Nomura M, Nakamura Y 2016 Phys. Rev. Lett. 116 223601

    [33]

    Haigh J A, Nunnenkamp A, Ramsay A J, Ferguson A J 2016 Phys. Rev. Lett. 117 133602

    [34]

    Zhang X, Zhu N, Zou C-L, Tang H X 2016 Phys. Rev. Lett. 117 123605

    [35]

    Osada A, Gloppe A, Hisatomi R, Noguchi A, Yamazaki R, Nomura M, Nakamura Y, Usami K 2018 Phys. Rev. Lett. 120 133602

    [36]

    Harder M, Yang Y, Yao B M, Yu C H, Rao J W, Gui Y S, Stamps R L, Hu C-M 2018 Phys. Rev. Lett. 121 137203

    [37]

    Yang Y, Rao J W, Gui Y S, Yao B M, Lu W, Hu C M 2019 Phys. Rev. Appl. 11 054023

    [38]

    Wang Y P, Rao J W, Yang Y, Xu P C, Gui Y S, Yao B M, You J Q, Hu C M 2019 Phys. Rev. Lett. 123 127202

    [39]

    Zhang X, Zou C, Zhu N, Marquardt F, Jiang L, Tang H X 2015 Nature Commun. 6 8914

    [40]

    Nair J M P, Mukhopadhyay D, Agarwal G S 2022 Phys. Rev. B 105 214418

    [41]

    Zhang Q, Xue J S, Sun Y T, Guo J J, Chen Y X, Tian Y F, Yan S S, Bai L H 2021 Phys. Rev. B 104 094303

    [42]

    Zhang D, Song W, Chai G 2017 J. Phys. D: Appl. Phys. 50 205003

    [43]

    An K, Kohno R, Litvinenko A N, Seeger R L, Naletov V V, Vila L, De Loubens G, Youssef J B, Vukadinovic N, Bauer G E W, Slavin A N, Tiberkevich V S, Klein O 2022 Phys. Rev. X 12 011060

    [44]

    Tserkovnyak Y, Brataas A, Bauer G E W, Halperin B I 2005 Rev. Mod. Phys. 77 1375

    [45]

    Ma K, Li C, Hao Z, Ong C K, Chai G 2023 Phys. Rev. B 108 094422

    [46]

    Zhan X, Zhang Y, Yan X, Xiao Y 2021 J. Appl. Phys. 130 123901

    [47]

    Mahan G D 2000 Many-Particle Physics (Kluwer Academic/Plenum Publishers)

    [48]

    Holstein T, Primakoff H 1940 Phys. Rev. 58 1098

    [49]

    Chen J, Liu C, Liu T, Xiao Y, Xia K, Bauer G E W, Wu M, Yu H 2018 Phys. Rev. Lett. 120 217202

  • [1] XU Minghui, LIU Xiaomin, SHI Jiajia, ZHANG Chong, ZHANG Jing, YANG Rongguo, GAO Jiangrui. Generation of microwave-phonon and magnon-optics entangled states. Acta Physica Sinica, doi: 10.7498/aps.74.20241664
    [2] CHEN zhijian, ZHAO kaixin, WANG chenxiao, WEI chunke, YAO bimu. Broadband Nonreciprocal Transmission Tuned by Pump-Induced Magnon Modes. Acta Physica Sinica, doi: 10.7498/aps.74.20241666
    [3] Jin Zhe-Jun-Yu, Zeng Zhao-Zhuo, Cao Yun-Shan, Yan Peng. Magnon Hall effect. Acta Physica Sinica, doi: 10.7498/aps.73.20231589
    [4] Chen Ze-Yu, Peng Yu-Bin, Wang Rui, He Yong-Ning, Cui Wan-Zhao. Reaction dynamic process of low pressure discharge plasma in microwave resonant cavity. Acta Physica Sinica, doi: 10.7498/aps.71.20221385
    [5] Wang Ya-Jun, Wang Jun-Ping, Zhang Wen-Hui, Li Rui-Xin, Tian Long, Zheng Yao-Hui. Transmission characteristics of optical resonator. Acta Physica Sinica, doi: 10.7498/aps.70.20210234
    [6] Huang Gang-Bin, Wang Ju, Wang Wen-Rui, Jia Shi, Yu Jin-Long. An optoelectronic oscillator based on series resonance cavity. Acta Physica Sinica, doi: 10.7498/aps.65.044204
    [7] Li Pei, Wang Fu-Zhong, Zhang Li-Zhu, Zhang Guang-Lu. Influence of left-handed material on the resonant frequency of resonant cavity. Acta Physica Sinica, doi: 10.7498/aps.64.124103
    [8] Zhang Liang-Ying, Cao Li, Wu Da-Jin. Work done by a periodical external force on an overdamped harmonic oscillator with frequency fluctuation and energetic stochastic resonance. Acta Physica Sinica, doi: 10.7498/aps.62.190502
    [9] Lu Zhi-Xin, Cao Li. Stochastic resonance of square wave signal in an overdamped harmonic oscillator. Acta Physica Sinica, doi: 10.7498/aps.60.110501
    [10] Fang Jin-Yong, Huang Hui-Jun, Zang Zhi-Qiang, Huang Wen-Hua, Jiang Wei-Hua. High power microwave pulse compression systembased on cylindrical resonant cavity. Acta Physica Sinica, doi: 10.7498/aps.60.048404
    [11] Zhang Li, Liu Li, Cao Li. Stochastic resonance in an overdamped harmonic oscillator. Acta Physica Sinica, doi: 10.7498/aps.59.1494
    [12] Li Zheng-Hong, Meng Fan-Bao, Chang An-Bi, Hu Ke-Song. Investigation of open RF cavity by coupling theory. Acta Physica Sinica, doi: 10.7498/aps.53.3627
    [13] Shi Qing-Fan, Zheng Jun-Juan, Wang Qi. Effect of microwave cavity Q-value on the threshold of instability and autooscilations. Acta Physica Sinica, doi: 10.7498/aps.53.3535
    [14] LING RUI-LIANG. PROPAGATOR AND EXACT WAVE FUNCTION OF THE TIME DEPENDENTLY DAMPED HARMONIC OSCILLATOR. Acta Physica Sinica, doi: 10.7498/aps.50.1421
    [15] LING RUI-LIANG, FENG JIN-FU. AN EXACT WAVEFUNCTION OF DAMPED HARMONIC OSCILLATOR. Acta Physica Sinica, doi: 10.7498/aps.47.1952
    [16] CUI GUANG-JI, MENG XIAO-FAN, SHAO KAI. MAGNETIC COUPLING BETWEEN THE RESONANT JOSEPHSON TUNNEL JUNCTION AND THE APLLIED MICROWAVE (Ⅱ). Acta Physica Sinica, doi: 10.7498/aps.31.8
    [17] CUI GUANG-JI, MENG XIAO-FAN, SHAO KAI. MAGNETIC COUPLING BETWEEN THE RESONANT JOSEPHSON TUNNEL JUNCTION AND THE APLLIED MICROWAVE (Ⅰ). Acta Physica Sinica, doi: 10.7498/aps.31.1-2
    [18] LI QIANG-FA, XU CHENG-HE. MICROWAVE NETWORK THEORY OF OPEN RESONATORS IN THE FORM OF WAVEGUIDE WITH SLOWLY-VARYING CROSS-SECTION. Acta Physica Sinica, doi: 10.7498/aps.30.936
    [19] PENG HUAN-WU. QUANTUM MECHANICAL TREATMENT OF A DAMPED HARMONIC OSCILLATOR. Acta Physica Sinica, doi: 10.7498/aps.29.1084
    [20] FANG HONG-LIE. A CANONICAL FORMULATION FOR ANALYZING MULTIELEMENT RESONATORS. Acta Physica Sinica, doi: 10.7498/aps.28.430
Metrics
  • Abstract views:  314
  • PDF Downloads:  3
  • Cited By: 0
Publishing process
  • Available Online:  14 January 2025

/

返回文章
返回
Baidu
map