Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Influence of left-handed material on the resonant frequency of resonant cavity

Li Pei Wang Fu-Zhong Zhang Li-Zhu Zhang Guang-Lu

Citation:

Influence of left-handed material on the resonant frequency of resonant cavity

Li Pei, Wang Fu-Zhong, Zhang Li-Zhu, Zhang Guang-Lu
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The quality factor and the resonant frequency of a resonant cavity are the key factors that need to be considered in the process of resonator design. The wall of cavity is composed of conductor materials which are effective tools to generate high-frequency oscillation. The microwave cavity is widely used. From the perspective of the circuit, it has almost all the properties of LC resonance unit, such as mode selection. Therefore, it is widely used in filters, matching circuits, and antenna design. In industrial applications, the demand for high-frequency resonant cavity is relatively large. A traditional method can increase the resonant frequency of the resonant cavity by reducing the size of the cavity or using the high-order modes. However, as both approaches have their limitations, the design results are not ideal. By combining theoretical calculation and simulation, the factors that affect the resonant frequency of the resonator are analyzed. The results show the relationship between material properties of the filling medium and the resonant frequency of the cavity. Theoretical calculations show that when the left-handed materials are used as filling materials in the cavity, the resonant frequency can be increased without changing the size of the cavity. The results of high frequency structure simulator also prove the above result. Therefore, the resonant frequency of the resonator cannot be limited by the cavity size. It can be seen from the data that compared with reducing the size of the resonator or using high-order modes, filling left-handed materials can improve resonant frequency to a greater extent. The obtained conclusion shows a further progress compared with the traditional theory and provides a theoretical basis for the exploration and design of novel resonators.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61271011) and the National Natural Science Foundation of Tianjin, China (Grant No. 14JCYBJC17100).
    [1]

    Veselago V G 1968 Sov. Phys. Usp. 10 509

    [2]

    Caloz C 2009 Mater. Today 12 12

    [3]

    Xu H X, Wang G M, Wang J F, Yang Z M 2012 Chin. Phys. B 21 124101

    [4]

    Pendry J B, Holden A J, Stewart W J 1996 Phys. Rev. Lett. 76 4773

    [5]

    Wang D, Qin F, Wen J, Chen D M, Jin X, An H S, Zhang X K 2012 Chin. Phys. B 21 084101

    [6]

    Luo C, Johnson S G, Joannopoulos J D 2002 Appl. Phys. Lett. 81 2352

    [7]

    Si L M, Hou J X, Liu Y, L X 2014 Acta Phys. Sin. 63 027802 (in Chinese) [司黎明, 侯吉旋, 刘埇, 吕昕 2014 63 027802]

    [8]

    Shelby R A, Smith D R, Schultz S 2001 Science 292 77

    [9]

    Parazzoli C G, Greegor R B, Nielsen J A 2004 Appl. Phys. Lett. 84 3232

    [10]

    Smith D R, Vier D C, Kroll N 2000 Appl. Phys. Lett. 77 2246

    [11]

    Parazzoli C G, Greegor R B, Li K 2003 Phys. Rev. Lett. 90 107401

    [12]

    Luo J R, Cui J, Zhu M 2013 Chin. Phys. B 22 067803

    [13]

    Iyer A, Kremer P, Eleftheriades G 2003 Opt. Express 11 696

    [14]

    Foteinopoulou S, Soukoulis C M 2003 Phys. Rev. B 67 235107

    [15]

    Cubukcu E, Aydin K, Ozbay E, Foteinopoulou S, Soukoulis C M 2003 Nature 423 604

    [16]

    Kong J A, Wu B I, Zhang Y 2002 Microwave Opt. Technol. Lett. 33 136

    [17]

    Cui T J, Kong J A 2004 Phys. Rev. B 70 205106

    [18]

    Cui T J, Kong J A 2004 Phys. Rev. B 70 165113

    [19]

    Grzegorczyk T M, Kong J A 2006 Phys. Rev. B 74 033102

    [20]

    Pendry J B, Holden A J, Robbins D J 1998 J. Phys.: Condens. Matter 10 4785

    [21]

    Chang Q Z, Cun J R, Ding Z 2014 Chin. Phys. B 23 088401

    [22]

    Xiang Y J, Wen S C, Dai X Y 2008 Chin. J. Lasers 6 002

    [23]

    Yamada H, Chayahara A, Mokuno Y 2006 Diam. Relat. Mater. 15 1395

    [24]

    Wang Z P, Wu L H, Zhang X L 2008 Metamaterials,2008 International Workshop on Nanjing, China, November 9-12, 2008 p91

    [25]

    Hashemi M R, Itoh T 2008 Microwave Symposium Digest, 2008 IEEE MTT-S International Atlanta, USA, June 15-20, 2008 p331

    [26]

    Chen B L 2005 Optimization Theory and Algorithms (Beijing: Tsinghua University Press Ltd.) pp203-243 (in Chinese) [陈宝林 2005 最优化理论与算法 (北京: 清华大学出版社) 第203-243页]

    [27]

    Cheng E 1994 The Foundation of Microwave Technology (Xi’an: Xidian University Press) pp220-264 (in Chinese) [承恩 1994 微波技术基础 (西安: 西安电子科技大学出版社) 第220-264页]

    [28]

    Fang S J, Jin H, Tai Y C 2009 Microwave Technology (Beijing: Beijing University of Posts and Telecommunications Press) pp109-129 (in Chinese) [房少军, 金红, 邰佑诚 2009 微波技术(北京: 北京邮电大学出版社)第109-129页]

    [29]

    Li M Y, Liu M 2010 Detailed Design Applications HFSS Electromagnetic Simulation (Beijing: The People’s Posts and Telecommunications Press) pp267-283 (in Chinese) [李明洋, 刘敏 2010 HFSS电磁仿真设计应用详解 (北京: 人民邮电出版社) 第267-283页]

  • [1]

    Veselago V G 1968 Sov. Phys. Usp. 10 509

    [2]

    Caloz C 2009 Mater. Today 12 12

    [3]

    Xu H X, Wang G M, Wang J F, Yang Z M 2012 Chin. Phys. B 21 124101

    [4]

    Pendry J B, Holden A J, Stewart W J 1996 Phys. Rev. Lett. 76 4773

    [5]

    Wang D, Qin F, Wen J, Chen D M, Jin X, An H S, Zhang X K 2012 Chin. Phys. B 21 084101

    [6]

    Luo C, Johnson S G, Joannopoulos J D 2002 Appl. Phys. Lett. 81 2352

    [7]

    Si L M, Hou J X, Liu Y, L X 2014 Acta Phys. Sin. 63 027802 (in Chinese) [司黎明, 侯吉旋, 刘埇, 吕昕 2014 63 027802]

    [8]

    Shelby R A, Smith D R, Schultz S 2001 Science 292 77

    [9]

    Parazzoli C G, Greegor R B, Nielsen J A 2004 Appl. Phys. Lett. 84 3232

    [10]

    Smith D R, Vier D C, Kroll N 2000 Appl. Phys. Lett. 77 2246

    [11]

    Parazzoli C G, Greegor R B, Li K 2003 Phys. Rev. Lett. 90 107401

    [12]

    Luo J R, Cui J, Zhu M 2013 Chin. Phys. B 22 067803

    [13]

    Iyer A, Kremer P, Eleftheriades G 2003 Opt. Express 11 696

    [14]

    Foteinopoulou S, Soukoulis C M 2003 Phys. Rev. B 67 235107

    [15]

    Cubukcu E, Aydin K, Ozbay E, Foteinopoulou S, Soukoulis C M 2003 Nature 423 604

    [16]

    Kong J A, Wu B I, Zhang Y 2002 Microwave Opt. Technol. Lett. 33 136

    [17]

    Cui T J, Kong J A 2004 Phys. Rev. B 70 205106

    [18]

    Cui T J, Kong J A 2004 Phys. Rev. B 70 165113

    [19]

    Grzegorczyk T M, Kong J A 2006 Phys. Rev. B 74 033102

    [20]

    Pendry J B, Holden A J, Robbins D J 1998 J. Phys.: Condens. Matter 10 4785

    [21]

    Chang Q Z, Cun J R, Ding Z 2014 Chin. Phys. B 23 088401

    [22]

    Xiang Y J, Wen S C, Dai X Y 2008 Chin. J. Lasers 6 002

    [23]

    Yamada H, Chayahara A, Mokuno Y 2006 Diam. Relat. Mater. 15 1395

    [24]

    Wang Z P, Wu L H, Zhang X L 2008 Metamaterials,2008 International Workshop on Nanjing, China, November 9-12, 2008 p91

    [25]

    Hashemi M R, Itoh T 2008 Microwave Symposium Digest, 2008 IEEE MTT-S International Atlanta, USA, June 15-20, 2008 p331

    [26]

    Chen B L 2005 Optimization Theory and Algorithms (Beijing: Tsinghua University Press Ltd.) pp203-243 (in Chinese) [陈宝林 2005 最优化理论与算法 (北京: 清华大学出版社) 第203-243页]

    [27]

    Cheng E 1994 The Foundation of Microwave Technology (Xi’an: Xidian University Press) pp220-264 (in Chinese) [承恩 1994 微波技术基础 (西安: 西安电子科技大学出版社) 第220-264页]

    [28]

    Fang S J, Jin H, Tai Y C 2009 Microwave Technology (Beijing: Beijing University of Posts and Telecommunications Press) pp109-129 (in Chinese) [房少军, 金红, 邰佑诚 2009 微波技术(北京: 北京邮电大学出版社)第109-129页]

    [29]

    Li M Y, Liu M 2010 Detailed Design Applications HFSS Electromagnetic Simulation (Beijing: The People’s Posts and Telecommunications Press) pp267-283 (in Chinese) [李明洋, 刘敏 2010 HFSS电磁仿真设计应用详解 (北京: 人民邮电出版社) 第267-283页]

  • [1] Hou Lei, Guan Shuyang, Yin Jun, Zhang Yujun, Xiao Yiming, Xu Wen, Ding Lan. High-order cavity coupled plasmon polaritons in a cavity-monolayer MoS2 system. Acta Physica Sinica, 2024, 73(22): . doi: 10.7498/aps.73.20241106
    [2] Zhang Yi-Shuang, Sang Yong-Jie, Chen Yong-Yao, Wu Shuai. Theoretical study on resonance frequencies of vibration modes of Janus-Helmholtz transducer. Acta Physica Sinica, 2024, 73(3): 034303. doi: 10.7498/aps.73.20231251
    [3] Zhu Yi-Fan, Geng Tao. Generation of high-quality circular Airy beams in laser resonator. Acta Physica Sinica, 2020, 69(1): 014205. doi: 10.7498/aps.69.20191088
    [4] Zhang Peng-Li, Lin Shu-Yu, Zhu Hua-Ze, Zhang Tao. Coupled resonance of bubbles in spherical cavitation clouds. Acta Physica Sinica, 2019, 68(13): 134301. doi: 10.7498/aps.68.20190360
    [5] Ma Xia, Wang Jing. Study on resonance frequency of doping silicon nano-beam by theoretical model and molecular dynamics simulation. Acta Physica Sinica, 2017, 66(10): 106103. doi: 10.7498/aps.66.106103
    [6] Liang Zhen-Jiang, Liu Hai-Xia, Niu Yan-Xiong, Yin Yi-heng. Design and performance analysis of microcavity-enhanced graphene photodetector. Acta Physica Sinica, 2016, 65(13): 138501. doi: 10.7498/aps.65.138501
    [7] Liang Zhen-Jiang, Liu Hai-Xia, Niu Yan-Xiong, Liu Kai-Ming, Yin Yi-Heng. Design and performance analysis of THz microcavity-enhanced graphene photodetector. Acta Physica Sinica, 2016, 65(16): 168101. doi: 10.7498/aps.65.168101
    [8] Lei Chao-Jun, Yu Sheng, Li Hong-Fu, Niu Xin-Jian, Liu Ying-Hui, Hou Shen-Yong, Zhang Tian-Zhong. Study on gradually-varying cavity for a gyrotron. Acta Physica Sinica, 2012, 61(18): 180202. doi: 10.7498/aps.61.180202
    [9] Bi Ke, Ai Qian-Wei, Yang Lu, Wu Wei, Wang Yin-Gang. Study on resonance magnetoelectric effect of layeredNi/Pb(Zr,Ti)O3/TbFe2 composites. Acta Physica Sinica, 2011, 60(5): 057503. doi: 10.7498/aps.60.057503
    [10] Fang Jin-Yong, Huang Hui-Jun, Zang Zhi-Qiang, Huang Wen-Hua, Jiang Wei-Hua. High power microwave pulse compression systembased on cylindrical resonant cavity. Acta Physica Sinica, 2011, 60(4): 048404. doi: 10.7498/aps.60.048404
    [11] Bai Ning-Feng, Hong Wei, Sun Xiao-Han. Composite defect electromagnetic band gap cavity. Acta Physica Sinica, 2011, 60(1): 018401. doi: 10.7498/aps.60.018401
    [12] Liu Chang, Luo Yao-Tian, Tang Chang-Jian, Liu Pu-Kun. Electromagnetic mode analysis on the cold characteristics of photonic-band-gap resonant cavity loaded in gyrotron. Acta Physica Sinica, 2009, 58(12): 8174-8179. doi: 10.7498/aps.58.8174
    [13] Liu Yang, Gong Hua-Rong, Wei Yan-Yu, Gong Yu-Bin, Wang Wen-Xiang, Liao Fu-Jiang. An effective method for suppressing the mode competition in a rectangular cavity loaded with photonic crystals. Acta Physica Sinica, 2009, 58(11): 7845-7851. doi: 10.7498/aps.58.7845
    [14] Wu Ming-Feng, Meng Fan-Yi, Fu Jia-Hui, Wu Qun, Wu Jian. Novel miniaturized planar left-handed metamaterial transmission lines verified by the backward wave property. Acta Physica Sinica, 2008, 57(2): 822-826. doi: 10.7498/aps.57.822
    [15] Fu Jia-Hui, Meng Fan-Yi, Yang Guo-Hui, Wu Qun, Liu Xin-Lei. The research of left-handed material using unsplit FDTD method. Acta Physica Sinica, 2008, 57(7): 4070-4075. doi: 10.7498/aps.57.4070
    [16] Shi De-Heng, Sun Jin-Feng, Ma Heng, Zhu Zun-Lue. Investigation of analytic potential energy function, harmonic frequency and vibrational levels for the 23Σ+g state of spin-aligned dimer 7Li2. Acta Physica Sinica, 2007, 56(4): 2085-2091. doi: 10.7498/aps.56.2085
    [17] Jiang Yong-Yuan, Zhang Yong-Qiang, Shi Hong-Yan, Hou Chun-Feng, Sun Xiu-Dong. The Goos-H?nchen shift on the surface of uniaxially anisotropic left-handed materials. Acta Physica Sinica, 2007, 56(2): 798-804. doi: 10.7498/aps.56.798
    [18] Yang Rui, Xie Yong-Jun, Wang Peng, Yang Tong-Min. Subwavelength cavity resonator microstrip antennas based on left-and right-handed metamaterial bilayered substrates. Acta Physica Sinica, 2007, 56(8): 4504-4508. doi: 10.7498/aps.56.4504
    [19] Wu Ming-Feng, Meng Fan-Yi, Wu Qun, Wu Jian. Investigation on the miniaturization of the microstrip antenna based on the back ward wave property of left-handed medium. Acta Physica Sinica, 2006, 55(12): 6368-6373. doi: 10.7498/aps.55.6368
    [20] Wu Ming-Feng, Meng Fan-Yi, Wu Qun, Wu Jian. Design of left-handed microstrip based on DGS and double layers SRRs structures. Acta Physica Sinica, 2006, 55(11): 5790-5794. doi: 10.7498/aps.55.5790
Metrics
  • Abstract views:  7173
  • PDF Downloads:  427
  • Cited By: 0
Publishing process
  • Received Date:  13 November 2014
  • Accepted Date:  22 December 2014
  • Published Online:  05 June 2015

/

返回文章
返回
Baidu
map