-
本文研究了驱动场分别从正向和反向输入时,量子点-双腔磁光机械系统中的磁振子双稳态行为的调控。结果表明,当系统满足阻抗匹配条件时,正向和反向输入的驱动场引起的磁振子响应具有一致性;而在阻抗匹配条件不成立时,系统的双稳态特性表现出更低的阈值,即驱动场强度较小可实现从低稳态到高稳态的跃迁。此外,研究还发现,通过调节量子点间隧穿耦合强度、腔与量子点的耦合强度以及两腔之间的耦合强度,可以灵活控制双稳态阈值和磁滞回线的宽度,从而在较低的驱动场强度下实现高效的光学开关功能。该研究为基于磁振子的量子开关器件、信息存储及远程相互作用调控提供了新思路,并展示了在低功耗自旋逻辑器件与量子计算中的潜在应用价值。Magnons, as quasiparticles arising from spin wave excitations in magnetic materials, have demonstrated significant application potential in quantum information technology, spintronics, and microwave engineering in recent years. The cavity magnon optomechanical system, serving as a key platform for investigating magnetooptical interactions, has advanced the exploration of nonlinear dynamical behaviors and the innovative design of quantum devices through strong coupling between magnons, photons, and phonons. However, traditional single-cavity systems face limitations in terms of tunability, long-range interactions, and nonlinear enhancement, making them insufficient for complex quantum control requirements. In recent years, dual-cavity systems have emerged as a research hotspot due to their multidimensional control capabilities enabled by inter-cavity coupling, such as photon mode splitting and enhanced nonlinear Kerr effects. Concurrently, semiconductor quantum dots, owing to their tunable nonlinear response characteristics, offer a novel pathway for regulating magnon dynamics. In this work, we construct a novel coupled quantum system by integrating quantum dots and a dual-cavity architecture, and investigate the bistable phenomena under both forward and backward driving field inputs. By comparing the third-order nonlinear equations governing magnon populations in the two scenarios, we derive the impedance matching condition. When this condition is satisfied, the magnon responses induced by forward and backward driving fields are identical. Conversely, under impedance mismatch, the magnon responses exhibit distinct behaviors. Specifically, when the impedance matching condition is violated, the dual-cavity magnon optomechanical system incorporating three-level quantum dot molecules exhibits a lower bistability threshold compared to its counterpart without quantum dots. This allows transitions from the low to high steady states with reduced driving field intensities, enabling switching functionality at lower input powers. Furthermore, we establish a multiparameter cooperative control model, revealing a three-dimensional parameter space formed by tunneling coupling, cavity-quantum dot coupling, and inter-cavity coupling. By adjusting these coupling strengths, the bistability threshold and hysteresis loop width can be effectively controlled, thereby modulating the driving field intensity required for bistability. This system holds promise for experimental observation of magnonic bistability through vector network analyzer-based detection of abrupt changes in transmission or absorption windows within reflection spectra. Such capabilities could advance data signal transmission, switching devices, and memory technologies, potentially serving as components in large-scale quantum information processing units. Additionally, this research may find important applications in the field of magnetic spintronics.
-
Keywords:
- Cavity optomagnonics /
- Magnonic bistability /
- Quantum dot molecules
-
[1] Chumak A V, Serga A A, Hillebrands B 2014 Nat. Communications, 5 4700
[2] Yuan H Y, Yung M H 2018 Phys. Rev. B 95 060405
[3] Zhang X F, Zou C L, Jiang L, Tang H X 2014 Phys. Rev. Lett. 113 156401
[4] Sharma S, Blanter Y M, Bauer G E W 2018 Phys. Rev. Lett. 121 087205
[5] Wang B, Jia X, Lu X H, Xiong H 2022 Phys. Rev. A 105 053705
[6] Ghasemian E, Rafeie M, Musavi S A S, Kheirabady M S, Tavassoly M K 2024 Eur. Phys. J. Plus, 139 694
[7] Liao Q H, Peng K, Qiu H Y 2023 Chin. Phys. B 32 054205
[8] Liao Q H, Xiao X, Nie W J, Zhou N R 2020 Opt. Express 28 5288
[9] Huang B, Yu J L, Wang W R, Wang J, Xue J Q,Yu Y, Jia S, Yang E Z, 2015 Acta Phys. Sin. 64 094209 (in Chinese) [黄标,于晋龙,王文睿,王菊,薛纪强,于洋,贾石,杨恩泽 2015 64 094209]
[10] Soykal O O, Flatté M E 2010 Phys. Rev. Lett. 104 077202
[11] Soykal O O, Flatté M E 2010 Phys. Rev. B 82 104413
[12] Li H Y 2020 Ceram. Int. 46 15408
[13] Mukherjee K, Jana P C 2023 J. Korean Phys. Soc. 82 356
[14] Bhatt V, Singh M K, Agrawal A, Jha P K, Bhattacherjee A B 2024. J. Opt. Soc. Am. B 41 1187
[15] Li J, Zhu S Y, Agarwal G S 2018 Phys. Rev. Lett. 121 203601
[16] Li J, Wang Y P, You J Q, Zhu S Y 2023 Natl. Sci. Rev. 10 nwac247
[17] Yu M, Shen H, Li J 2020 Phys. Rev. Lett. 124 213604
[18] Fan Z Y, Qiu L, Groblacher S, Li J 2023 Laser & Photonics Rev. 17 2200866
[19] Li H T, Fan Z Y, Zhu H B, Groblacher S, Li J 2024 Laser & Photonics Rev. 19 2401348
[20] Qian H, Fan Z Y, Li J 2022 Quantum Sci. Technol. 8 015022
[21] Fabiha R, Lundquist J, Majumder S 2022 Adv. Sci. 9 2104644
[22] Zhang D K, Luo X Q, Wang Y P, Li T F, You J Q 2017 Nat. Communications 8 1368
[23] Wang Y P, Zhang G Q, Zhang D K, Li T F, Hu C M, You J Q 2018 Phys. Rev. Lett. 120 057202
[24] Ghasemian E, Rafeie M, Musavi S A S, Kheirabady M. S, Tavassoly M K 2024 Eur. Phys. J. Plus 139 694
[25] Wang B, Jia X, Lu X H, Xiong H 2022 Phys. Rev. A 105 053705
[26] Kurizki G, Bertet P, Kubo Y, Molmerc K, Petrosyand D, Rablf P, Schmiedmayer J 2015 PNAS 112 3866.
[27] Aspelmeyer M, Kippenberg T J, Marquardt F 2014 Rev. Mod. Phys. 84 1391
[28] Childress L, Sorensen A S, Lukin M D 2004 Phys. Rev. A, 69 042302
[29] Guo Y, Ma S S, Shu C C 2024 Chin. Phys. B 33 024203
[30] Petroff P M, Lorke A, Imamoglu A 2001 Phys. Today 54 46
[31] Liu G, Xiong W, Ying Z J 2023 Phys. Rev. A 108, 033704
[32] Ullah K 2019 Phys. Lett. A 383 3074
[33] Chen B, Shang L, Wang X F, Chen J B, Xue H B, Liu X, Zhang J 2019 Phys. Rev. A 99 063810
[34] Kong C, Xiong H, Wu Y 2019 Phys. Rev. Appl. 12 034001
[35] Shen R C, Li J, Fan Z Y, Wang Y P, You J Q 2022 Phys. Rev. Lett. 129 123601
[36] Yadav S, Bhattacherjee A B 2023 Phys. Scr. 98 025102
[37] Xu X W, Song L N, Zheng Q, Wang Z H, Li Y 2018 Phys. Rev. A 98 063845
计量
- 文章访问数: 83
- PDF下载量: 4
- 被引次数: 0