-
Orbital angular momentum (OAM), as a novel high-dimensional degree of freedom, offering significantly potential for optical communication in increasing the system channel capacity and addressing the scarcity of communication resources. However, the effective recognition and detection of OAM modes are the core challenges for achieving efficient communication in such systems. This paper presents an OAM decoding system based on log-polar coordinate transformation, consisting of a designed coordinate transformation device, a phase corrector, and a Fourier transform lens. The coordinate transformation device fabricated by liquid crystal polymer is utilized to map the incident vortex beam from polar coordinates into Cartesian coordinates, followed by the phase corrector to compensate for phase distortions into a collimated beam. Finally, the Fourier transform lens is employed to separate the OAM modes at different space positions in its rear focal plane. The performance of the system is numerically evaluated under several ablation studies, analyzing the impact of various grating parameters on beam separation efficiency. Experimentally, the system successfully achieved the decoding of OAM modes ranging from -35 to +31 orders. Furthermore, a free-space optical communication demonstration system was constructed based on this OAM decoding system. By introducing specifically designed decoding rules, the system effectively mitigated the adjacent mode crosstalk inherent in logarithmic polar coordinate transformation and successfully transmitted 748,934 symbols without errors. Such favorable results highlight the proposed system ability for OAM-based optical communication and provide valuable insights for the future development of high-capacity optical communication networks.
-
[1] Allen L, Beijersbergen M W, Spreeuw R J C, Woerdman J P 1992Phys. Rev. A 45 8185
[2] Beth R A 1936Phys. Rev. 50 115
[3] Shen Y, Wang X, Xie Z, Min C, Fu X, Liu Q, Gong M, Yuan X 2019Light Sci Appl 8 90
[4] Willner A E, Huang H, Yan Y, Ren Y, Ahmed N, Xie G, Bao C, Li L, Cao Y, Zhao Z, Wang J, Lavery M P J, Tur M, Ramachandran S, Molisch A F, Ashrafi N, Ashrafi S 2015Adv. Opt. Photon. 7 66
[5] Mair A, Vaziri A, Weihs G, Zeilinger A 2001Nature 412 313
[6] Fang X, Ren H, Gu M 2020Nat. Photonics 14 102
[7] Erhard M, Fickler R, Krenn M, Zeilinger A 2017Light Sci Appl 7 17146
[8] Wang J, Liu J, Li S, Zhao Y, Du J, Zhu L 2022Nanophotonics 11 645
[9] Trichili A, Park K H, Zghal M, Ooi B S, Alouini M S 2019IEEE Commun. Surv. Tutorials 21 3175
[10] Chen Y A, Zhang Q, Chen T Y, Cai W Q, Liao S K, Zhang J, Chen K, Yin J, Ren J G, Chen Z, Han S L, Yu Q, Liang K, Zhou F, Yuan X, Zhao M S, Wang T Y, Jiang X, Zhang L, Liu W Y, Li Y, Shen Q, Cao Y, Lu C Y, Shu R, Wang J Y, Li L, Liu N L, Xu F, Wang X B, Peng C Z, Pan J W 2021Nature 589 214
[11] Qiu X, Guo H, Chen L 2023Nat. Commun. 14 8244
[12] Vallone G, D’Ambrosio V, Sponselli A, Slussarenko S, Marrucci L, Sciarrino F, Villoresi P 2014Phys. Rev. Lett. 113 060503
[13] Wang X L, Cai X D, Su Z E, Chen M C, Wu D, Li L, Liu N L, Lu C Y, Pan J W 2015Nature 518 516
[14] Du J, Wang J 2015Opt. Lett. 40 4827
[15] Shang Z, Fu S, Hai L, Zhang Z, Li L, Gao C 2022Opt. Express 30 34053
[16] Wen Y, Chremmos I, Chen Y, Zhu G, Zhang J, Zhu J, Zhang Y, Liu J, Yu S 2020Optica 7 254
[17] Wang J, Yang J Y, Fazal I M, Ahmed N, Yan Y, Huang H, Ren Y, Yue Y, Dolinar S, Tur M, Willner A E 2012Nat. Photonics 6 488
[18] Fu S, Zhai Y, Zhang J, Liu X, Song R, Zhou H, Gao C 2020PhotoniX 1 19
[19] Fu S, Wang T W, Yan Gao Y and Gao C 2016Chin. Opt. Lett. 14 080501
[20] Zhao Q, Dong M, Bai Y, Yang Y 2020Photon. Res. 8 745
[21] Leach J, Padgett M J, Barnett S M, Franke-Arnold S, Courtial J 2002Phys. Rev. Lett. 88 257901
[22] Zhou H L, Fu D Z, Dong J J, Zhang P, Chen D X, Cai X L, Li F L, Zhang X L 2016Light Sci Appl 6 16251
[23] Lavery M P J, Speirits F C, Barnett S M, Padgett M J 2013Science 341 537
[24] Wang H, Zhan Z, Hu F, Meng Y, Liu Z, Fu X, Liu Q 2023PhotoniX 4 9
[25] Wang J, Fu S, Shang Z, Hai L, Gao C 2022Opt. Lett. 47 1419
[26] Zhou S, Li L, Gao C, Fu S 2023Opt. Lett. 49 173
[27] Berkhout G C G, Lavery M P J, Courtial J, Beijersbergen M W, Padgett M J 2010Phys. Rev. Lett. 105 153601
[28] Mirhosseini M, Malik M, Shi Z, Boyd R W 2013Nat. Commun. 4 2781
[29] Wen Y, Chremmos I, Chen Y, Zhu J, Zhang Y, Yu S 2018Phys. Rev. Lett. 120 193904
[30] Cheng J, Wan C, Zhan Q 2022Opt. Express 30 16330
[31] Cheng J, Sha X, Zhang H, Chen Q, Qu G, Song Q, Yu S, Xiao S 2022Nano Lett. 22 3993
[32] Li L, Guo Y, Zhang Z, Shang Z, Li C, Wang J, Gao L, Hai L, Gao C, Fu S 2023Adv. Photon. 5
[33] Hossack, W. J., Darling, A. M., & Dahdouh, A 1987Journal of Modern Optics 341235
[34] Lavery M P J, Robertson D J, Berkhout G C G, Love G D, Padgett M J, Courtial J 2012Opt. Express 20 2110
[35] Lavery M P J, Robertson D J, Sponselli A, Courtial J, Steinhoff N K, Tyler G A, Wilner A E, Padgett M J 2013New J. Phys. 15 013024
[36] Chen P, Wei B Y, Hu W, Lu Y Q 2020Advanced Materials 32 1903665
[37] Saber G, Gutiérrez-Castrejón R, Xing Z, Alam S, El-Fiky E, Ceballos-Herrera D E, Cavaliere F, Vall-Llosera G, Lessard S, Plant D V 2021IEEE Photonics Journal 131
Metrics
- Abstract views: 174
- PDF Downloads: 4
- Cited By: 0