Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Optical properties of ensemble of complex externally mixed aerosol particles under different relative humidity conditions

WANG Mingjun YU Jihua BAI Liangliang ZHOU Yiming

Citation:

Optical properties of ensemble of complex externally mixed aerosol particles under different relative humidity conditions

WANG Mingjun, YU Jihua, BAI Liangliang, ZHOU Yiming
cstr: 32037.14.aps.74.20241140
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Microphysical quantities (particle shape, composition, size, density, complex refractive index, size distribution model, aspect ratio, hygroscopic parameter, etc.) of the ensemble of complex externally mixed aerosol particles vary greatly in humid environments (sea fog, water mist, haze, etc.). These microphysical quantities directly affect the transmission and scattering characteristics of laser. The optical properties (extinction coefficient, absorption coefficient, backscattering coefficient, phase function, etc.) of the ensemble of complex externally mixed aerosol particles directly determine the propagation properties of laser signals in the atmosphere, as well as the intensity and shape of echo signals. Therefore, studying the optical properties of the ensemble of complex externally mixed aerosol particles in humid environments is of significant importance for engineering applications such as autonomous driving, mapping, and remote sensing detection.Based on the various possibilities of aerosol particles existing in humid environments, the physicochemical properties of aerosol particles, including their shapes (sphere, oblate spheroid, prolate spheroid, and irregular), size distributions, complex refractive indices, densities, aspect ratios, their distribution models, and hygroscopicity parameters, are all taken into consideration in this work. Therefore, a scattering model of the ensemble of complex externally mixed aerosol particles is presented. Based on the presented complex aerosol scattering model, the influences of different mixing ratios (MR), and relative humidity (RH) on the optical properties, such as extinction coefficient, single scattering albedo, scattering phase matrix, asymmetry factor, backscattering coefficient, lidar ratio, and linear depolarization ratio, are numerically analyzed at typical incident laser wavelengths (0.78, 0.905, 1.064, 1.55, and 2.1 μm).In order to verify and demonstrate the rationality of the complex aerosol scattering model presented in this work, this model is compared with the scattering model of maritime pollution aerosol in optical properties of aerosols and clouds (OPAC). The results show that the optical properties of these two different aerosol scattering models vary similarly with wavelengths, although differences exist, but they are relatively small. Therefore, the influences of MR on the optical properties of the ensemble of complex internally mixed aerosol particles are analyzed. The influences of RH on the optical properties of the ensemble of complex internally mixed aerosol particles are also analyzed. The numerical results indicate that the extinction coefficient and phase function P11 exhibit strong sensitivity to both the MR and RH. As RH increases, the extinction coefficient and the forward scattering of P11 also increase. Compared with MR, single scattering albedo and asymmetry factor are more sensitive to RH. Significant differences in the sensitivity to RH and wavelength between linear and circular polarization properties are observed at different scattering angles. The backscattering coefficient is found to be inversely proportional to the lidar ratio, and the backscattering coefficient and the lidar ratio are both sensitive to MR and RH. It is observed that RH has a more pronounced effect on the linear depolarization ratio, while the influence of MR is weaker. The complex scattering model presented in this work further expands the study of aerosol optical properties and provides theoretical support for studying engineering applications involving lasers in different RHs environments. It is worth emphasizing that this work only focuses on external mixing. Therefore, the optical properties of the ensemble of complex internally mixed aerosol particles under different RHs will be discussed in the future.
      Corresponding author: YU Jihua, yujh912@aliyun.com
    • Funds: Project supported by the Major Research Plan of the National Natural Science Foundation of China (Grant No. 92052106), the National Natural Science Foundation of China (Grant No. 61771385), the Innovation Team of Higher Education Institutions in Shaanxi Province, China (Grant No. 2024RS-CXTD-12), the Key Core Technology Tackling Project of Key Industrial Chain of Xi'an Municipality, China (Grant No. 103-433023062), the Key Research and Development Program of Xianyang Municipality, China (Grant No. L2023-ZDYF-QYCX-025), and the Key Laboratory Fund of Visible Optical Communication in Henan Province, China (Grant No. HKLVLC2023-B05).
    [1]

    Hess M, Koepke P, Schult I 1998 B. Am. Meteorol. Soc. 79 831Google Scholar

    [2]

    王莉 2022 硕士学位论文 (武汉: 武汉科技大学)

    Wang L 2022 M. S. Thesis (Wuhan: Wuhan University of Science and Technology

    [3]

    赵佳佳, 顾芳, 张加宏, 崔芬萍 2020 光学学报 40 0501001Google Scholar

    Zhao J J, Gu F, Gu J H, Cui F P 2020 Acta Opt. Sin. 40 0501001Google Scholar

    [4]

    Koepke P, Gasteiger J, Hess M 2015 Atmos. Chem. Phys. 15 5947Google Scholar

    [5]

    Tao Z M, Wang Z Z, Yang S J, Shan H H, Ma X M, Zhang H, Zhao S G, Liu D, Xie C B, Wang Y J 2016 Atmos. Meas. Tech. 9 1369Google Scholar

    [6]

    Lian W T, Dai C M, Chen S P, Zhang Y X, Wu F, Zhang C, Wang C, Wei H L 2024 Remote Sens. 16 770Google Scholar

    [7]

    Petters M D, Kreidenweis S M 2007 Atmos. Chem. Phys. 7 1961Google Scholar

    [8]

    Zieger P, Fierz-Schmidhauser R, Weingartner E, Baltensperger U 2013 Atmos. Chem. Phys. 13 10609Google Scholar

    [9]

    Gasteiger J, Wiegner M 2018 Geosci. Model Dev. 11 2739Google Scholar

    [10]

    张学海, 戴聪明, 张鑫, 魏合理, 朱希娟, 马静 2019 红外与激光工程 48 0809002Google Scholar

    Zhang X H, Dai C M, Zhang X, Wei H L, Zhu X J, Ma J 2019 Infrar. Laser Eng. 48 0809002Google Scholar

    [11]

    战俊彤, 张肃, 付强, 段锦, 李英超, 姜会林 2020 红外与激光工程 49 20200057Google Scholar

    Zhan J T, Zhang S, Fu Q, Duan J, Li Y C, Jiang H L 2020 Infrar. Laser Eng. 49 20200057Google Scholar

    [12]

    Shen C, Zhang S, Fu Q, Zhan J T, Duan J, Li Y C 2023 Front. Phys. 11 1266027Google Scholar

    [13]

    Wu S X, Gao X B, Dou X Q, Xie L 2024 J. Quant. Spectrosc. Radiat. Transfer 312 108808Google Scholar

    [14]

    Gasteiger J, Wiegner M, Groß S, Freudenthaler V, Toledano C, Tesche M, Kandler K 2011 Tellus B: Chem. Phys. Meteorol. 63 725Google Scholar

    [15]

    张学海, 魏合理, 戴聪明, 曹亚楠, 李学彬 2015 22 224205Google Scholar

    Zhang X H, Wei H L, Dai C M, Cao Y N, Li X B 2015 Acta Phys. Sin. 22 224205Google Scholar

    [16]

    Dubovik O, Sinyuk A, Lapyonok T, Holben B N, Mishchenko M, Yang P, Eck T F, Volten H, Muñoz O, Veihelmann B, Van der Zande W J, Leon J F, Sorokin M, Slutsker I 2006 J. Geophys. Res. 111 D11208Google Scholar

    [17]

    Kandler K, Schütz L, Deutscher C, Ebert M, Hofmann H, Jäckel S, Jaenicke R, Knippertz P, Lieke K, Massling A, Petzold A, Schladitz B, Weinzierl A, Wiedensohler, Zorn S, Weinbruch1 S 2009 Tellus B 61 32Google Scholar

    [18]

    Li L, Zheng X, Li Z Q, Li Z H, Dubovik O, Chen X F, Wendisch M 2017 Opt. Express 25 A813Google Scholar

    [19]

    王明军, 吴振森, 李应乐, 张小安, 由金光 2006 红外与激光工程 35 66Google Scholar

    Wang M J, Wu Z S, Li Y L, Zhang X, You J G 2006 Infrar. Laser Eng. 35 66Google Scholar

    [20]

    Wang M J, Yu J H, Ke X Z, Wu T 2018 Progress in Electromagnetics Research Symposium Toyama, Japan, August 1−4, 2018 p1141

    [21]

    Meng Z, Yang P, Kattawar G W, Bi L, Liou K N, Laszlo I 2010 J. Aerosol Sci. 41 501Google Scholar

    [22]

    Jung C H, Lee J Y, Um J, Lee S S, Yoon Y J, Kim Y P 2019 Appl. Sci. 9 1443Google Scholar

    [23]

    Castellanos P, Colarco P, Espinosa W R, Guzewich S D, Levy R C, Miller R L, Chin M, Kahn R A, Kemppinen O, Moosmüller H, Nowottnick E P 2024 Remote Sens. Environ. 303 113982Google Scholar

    [24]

    Liou K N, Yang P 2016 Light Scattering by Ice Crystals: Fundamentals and Applications (Cambridge: Cambridge University Press) pp100, 101

    [25]

    Akpootu D O, Bello G, Alaiyemola S R, Abdullahi Z, Aruna S, Umar M, Badmus T O, Isah A K, Abdulsalam M K, Aminu Z 2023 DUJOPAS 9 86Google Scholar

  • 图 1  气溶胶粒子形状 (a)球形; (b)扁椭球形; (c)长椭球形; (d)不规则形

    Figure 1.  Shapes of aerosol particles: (a) Sphere; (b) oblate spheroid; (c) prolate spheroid; (d) irregular.

    图 2  椭球形气溶胶粒子 (a)长短轴比的示意图; (b)长短轴比的分布特征

    Figure 2.  Spheroid aerosol particles: (a) Diagram of aspect ratio; (b) distribution of aspect ratio.

    图 3  比较不同气溶胶散射模型下的光学特性 (a)消光系数; (b)单次散射反照率; (c)不对称因子

    Figure 3.  Comparison of optical properties under different aerosol scattering models: (a) Extinction coefficient; (b) single scattering albedo; (c) asymmetry factor.

    图 4  不同混合比例下的光学特性 (a)消光系数; (b)单次散射反照率; (c)不对称因子

    Figure 4.  Optical properties for different MRs: (a) Extinction coefficient; (b) single scattering albedo; (c) asymmetry factor.

    图 5  入射波长为1.064 μm时不同混合比例下散射相矩阵随散射角的变化 (a) $ {P_{11}} $; (b) $ - {P_{12}}/{P_{11}} $; (c) $ {P_{22}}/{P_{11}} $; (d) $ {P_{33}}/{P_{11}} $; (e) $ {P_{34}}/{P_{11}} $; (f) $ {P_{44}}/{P_{11}} $

    Figure 5.  Scattering phase matrix vs. scattering angle for different MRs at λ = 1.064 μm: (a) $ {P_{11}} $; (b) $ - {P_{12}}/{P_{11}} $; (c) $ {P_{22}}/{P_{11}} $; (d) $ {P_{33}}/{P_{11}} $; (e) $ {P_{34}}/{P_{11}} $; (f) $ {P_{44}}/{P_{11}} $.

    图 6  不同混合比例下的光学特性 (a)后向散射系数; (b)激光雷达比; (c)线性退偏比

    Figure 6.  Optical properties for different MRs: (a) Backscattering coefficient; (b) lidar ratio; (c) linear depolarization ratio.

    图 7  典型激光波长入射下光学特性随相对湿度的变化 (a)消光系数; (b)单次散射反照率; (c)不对称因子

    Figure 7.  Changes of optical properties with RHs at typical laser wavelength incident: (a) Extinction coefficient; (b) single scattering albedo; (c) asymmetry factor.

    图 8  入射波长为1.064 μm时不同相对湿度条件下散射相矩阵随散射角的变化 (a) $ {P_{11}} $; (b) $ - {P_{12}}/{P_{11}} $; (c) $ {P_{22}}/{P_{11}} $; (d) $ {P_{33}}/{P_{11}} $; (e) $ {P_{34}}/{P_{11}} $; (f) $ {P_{44}}/{P_{11}} $

    Figure 8.  Scattering phase matrix vs. scattering angle for different RHs at λ = 1.064 μm: (a) $ {P_{11}} $; (b) $ - {P_{12}}/{P_{11}} $; (c) $ {P_{22}}/{P_{11}} $; (d) $ {P_{33}}/{P_{11}} $; (e) $ {P_{34}}/{P_{11}} $; (f) $ {P_{44}}/{P_{11}} $.

    图 9  RH为95%时典型激光波长入射下散射相矩阵随散射角的变化 (a) $ {P_{11}} $; (b) $ - {P_{12}}/{P_{11}} $; (c) $ {P_{22}}/{P_{11}} $; (d) $ {P_{33}}/{P_{11}} $; (e) $ {P_{34}}/{P_{11}} $; (f) $ {P_{44}}/{P_{11}} $

    Figure 9.  Scattering phase matrix vs. scattering angle at typical laser wavelength incident when RH is 95%: (a) $ {P_{11}} $; (b) $ - {P_{12}}/{P_{11}} $; (c) $ {P_{22}}/{P_{11}} $; (d) $ {P_{33}}/{P_{11}} $; (e) $ {P_{34}}/{P_{11}} $; (f) $ {P_{44}}/{P_{11}} $.

    图 10  典型激光波长入射下光学特性随相对湿度的变化关系 (a)后向散射系数; (b)激光雷达比; (c)线性退偏比

    Figure 10.  Changes of optical properties with RHs at typical laser wavelength incident: (a) Backscattering coefficient; (b) lidar ratio; (c) linear depolarization ratio.

    表 1  复杂外混合气溶胶粒子群的光散射模型

    Table 1.  Scattering model of the ensemble of complex externally mixed aerosol particles.

    Aerosol shape Aerosol density Hygroscopicity
    parameter
    Aspect ratio Type of refractive
    index of aerosol
    Log-normal distribution
    σ rmod
    Sphere 1.8 0.2 1 Water soluble 2.24 0.0212
    Spheroids 2.2 0.8 Ref. [16] Sea salt 2.03 0.209
    Spheroids 1.7 0.5 Ref. [17] Sulfate 2.03 0.0695
    Irregular 2.6 0 1.3 Mineral 2 0.5
    DownLoad: CSV
    Baidu
  • [1]

    Hess M, Koepke P, Schult I 1998 B. Am. Meteorol. Soc. 79 831Google Scholar

    [2]

    王莉 2022 硕士学位论文 (武汉: 武汉科技大学)

    Wang L 2022 M. S. Thesis (Wuhan: Wuhan University of Science and Technology

    [3]

    赵佳佳, 顾芳, 张加宏, 崔芬萍 2020 光学学报 40 0501001Google Scholar

    Zhao J J, Gu F, Gu J H, Cui F P 2020 Acta Opt. Sin. 40 0501001Google Scholar

    [4]

    Koepke P, Gasteiger J, Hess M 2015 Atmos. Chem. Phys. 15 5947Google Scholar

    [5]

    Tao Z M, Wang Z Z, Yang S J, Shan H H, Ma X M, Zhang H, Zhao S G, Liu D, Xie C B, Wang Y J 2016 Atmos. Meas. Tech. 9 1369Google Scholar

    [6]

    Lian W T, Dai C M, Chen S P, Zhang Y X, Wu F, Zhang C, Wang C, Wei H L 2024 Remote Sens. 16 770Google Scholar

    [7]

    Petters M D, Kreidenweis S M 2007 Atmos. Chem. Phys. 7 1961Google Scholar

    [8]

    Zieger P, Fierz-Schmidhauser R, Weingartner E, Baltensperger U 2013 Atmos. Chem. Phys. 13 10609Google Scholar

    [9]

    Gasteiger J, Wiegner M 2018 Geosci. Model Dev. 11 2739Google Scholar

    [10]

    张学海, 戴聪明, 张鑫, 魏合理, 朱希娟, 马静 2019 红外与激光工程 48 0809002Google Scholar

    Zhang X H, Dai C M, Zhang X, Wei H L, Zhu X J, Ma J 2019 Infrar. Laser Eng. 48 0809002Google Scholar

    [11]

    战俊彤, 张肃, 付强, 段锦, 李英超, 姜会林 2020 红外与激光工程 49 20200057Google Scholar

    Zhan J T, Zhang S, Fu Q, Duan J, Li Y C, Jiang H L 2020 Infrar. Laser Eng. 49 20200057Google Scholar

    [12]

    Shen C, Zhang S, Fu Q, Zhan J T, Duan J, Li Y C 2023 Front. Phys. 11 1266027Google Scholar

    [13]

    Wu S X, Gao X B, Dou X Q, Xie L 2024 J. Quant. Spectrosc. Radiat. Transfer 312 108808Google Scholar

    [14]

    Gasteiger J, Wiegner M, Groß S, Freudenthaler V, Toledano C, Tesche M, Kandler K 2011 Tellus B: Chem. Phys. Meteorol. 63 725Google Scholar

    [15]

    张学海, 魏合理, 戴聪明, 曹亚楠, 李学彬 2015 22 224205Google Scholar

    Zhang X H, Wei H L, Dai C M, Cao Y N, Li X B 2015 Acta Phys. Sin. 22 224205Google Scholar

    [16]

    Dubovik O, Sinyuk A, Lapyonok T, Holben B N, Mishchenko M, Yang P, Eck T F, Volten H, Muñoz O, Veihelmann B, Van der Zande W J, Leon J F, Sorokin M, Slutsker I 2006 J. Geophys. Res. 111 D11208Google Scholar

    [17]

    Kandler K, Schütz L, Deutscher C, Ebert M, Hofmann H, Jäckel S, Jaenicke R, Knippertz P, Lieke K, Massling A, Petzold A, Schladitz B, Weinzierl A, Wiedensohler, Zorn S, Weinbruch1 S 2009 Tellus B 61 32Google Scholar

    [18]

    Li L, Zheng X, Li Z Q, Li Z H, Dubovik O, Chen X F, Wendisch M 2017 Opt. Express 25 A813Google Scholar

    [19]

    王明军, 吴振森, 李应乐, 张小安, 由金光 2006 红外与激光工程 35 66Google Scholar

    Wang M J, Wu Z S, Li Y L, Zhang X, You J G 2006 Infrar. Laser Eng. 35 66Google Scholar

    [20]

    Wang M J, Yu J H, Ke X Z, Wu T 2018 Progress in Electromagnetics Research Symposium Toyama, Japan, August 1−4, 2018 p1141

    [21]

    Meng Z, Yang P, Kattawar G W, Bi L, Liou K N, Laszlo I 2010 J. Aerosol Sci. 41 501Google Scholar

    [22]

    Jung C H, Lee J Y, Um J, Lee S S, Yoon Y J, Kim Y P 2019 Appl. Sci. 9 1443Google Scholar

    [23]

    Castellanos P, Colarco P, Espinosa W R, Guzewich S D, Levy R C, Miller R L, Chin M, Kahn R A, Kemppinen O, Moosmüller H, Nowottnick E P 2024 Remote Sens. Environ. 303 113982Google Scholar

    [24]

    Liou K N, Yang P 2016 Light Scattering by Ice Crystals: Fundamentals and Applications (Cambridge: Cambridge University Press) pp100, 101

    [25]

    Akpootu D O, Bello G, Alaiyemola S R, Abdullahi Z, Aruna S, Umar M, Badmus T O, Isah A K, Abdulsalam M K, Aminu Z 2023 DUJOPAS 9 86Google Scholar

  • [1] Hu Shuai, Gao Tai-Chang, Li Hao, Yang Bo, Jiang Zhi-Dong, Chen Ming, Li Shu-Lei. Simulating scattering properties of nonspherical aerosol particles using multiresolution timedomain method. Acta Physica Sinica, 2017, 66(4): 044207. doi: 10.7498/aps.66.044207
    [2] Fu Cheng-Hua. Analysis of optical scattering of micro-nano particles. Acta Physica Sinica, 2017, 66(9): 097301. doi: 10.7498/aps.66.097301
    [3] Zhang Yong-Yan, Wu Jiu-Hui, Zeng Tao, Zhong Hong-Min. Mechanism of eliminating the aerosol haze particles by using laser gradient force. Acta Physica Sinica, 2016, 65(7): 074203. doi: 10.7498/aps.65.074203
    [4] Nie Min, Ren Jia-Ming, Yang Guang, Zhang Mei-Ling, Pei Chang-Xing. Influences of nonspherical aerosol particles and relative humidity of atmosphere on the performance of free space quantum communication. Acta Physica Sinica, 2016, 65(19): 190301. doi: 10.7498/aps.65.190301
    [5] Zhang Xue-Hai, Wei He-Li, Dai Cong-Ming, Cao Ya-Nan, Li Xue-Bin. Influence of aspect ratio on the light scattering properties of spherical aerosol particles. Acta Physica Sinica, 2015, 64(22): 224205. doi: 10.7498/aps.64.224205
    [6] Zeng Lun-Wu, Zhang Hao, Tang Zhong-Liang, Song Run-Xia. Electromagnetic wave scattering by a topological insulator prolate spheroid particle. Acta Physica Sinica, 2012, 61(17): 177303. doi: 10.7498/aps.61.177303
    [7] Fan Meng, Chen Liang-Fu, Li Shen-Shen, Tao Jin-Hua, Su Lin, Zou Ming-Min, Zhang Ying, Han Dong. Scattering properties of non-spherical particles in the CO2 shortwave infrared band. Acta Physica Sinica, 2012, 61(20): 204202. doi: 10.7498/aps.61.204202
    [8] Sun Xian-Ming, Wang Hai-Hua, Shen Jin, Wang Shu-Jun. Scattering of polarized light by randomly oriented coated spheroidal particle. Acta Physica Sinica, 2011, 60(11): 114216. doi: 10.7498/aps.60.114216
    [9] Fang Wei, Sun Jun, Xie Zhen-Ping, Xu Wen-Bo. Convergence analysis of quantum-behaved particle swarm optimization algorithm and study on its control parameter. Acta Physica Sinica, 2010, 59(6): 3686-3694. doi: 10.7498/aps.59.3686
    [10] Bai Lu, Tang Shuang-Qing, Wu Zhen-Sen, Xie Pin-Hua, Wang Shi-Mei. Study of random sample scattering phase functions of polydisperse atmospheric aerosol in ultraviolet band. Acta Physica Sinica, 2010, 59(3): 1749-1755. doi: 10.7498/aps.59.1749
    [11] Qing Tao, Shao Tian-Min, Wen Shi-Zhu. Analysis of adhesion process between material surfaces. Acta Physica Sinica, 2007, 56(3): 1555-1562. doi: 10.7498/aps.56.1555
    [12] Hao Nan, Zhou Bin, Chen Li-Min. Measurement of nitrous acid and retrieval of aerosol parameters with differential optical absorption spectroscopy. Acta Physica Sinica, 2006, 55(3): 1529-1533. doi: 10.7498/aps.55.1529
    [13] Si Fu-Qi, Liu Jian-Guo, Xie Pin-Hua, Zhang Yu-Jun, Dou Ke, Liu Wen-Qing. Determination of size distribution of atmospheric aerosol by DOAS. Acta Physica Sinica, 2006, 55(6): 3165-3169. doi: 10.7498/aps.55.3165
    [14] Lou Zhi-Mei. Parametric orbit equation and symmetries of classical particle in the field of noncentral force. Acta Physica Sinica, 2005, 54(4): 1460-1463. doi: 10.7498/aps.54.1460
    [15] Wu Peng, Han Yi-Ping, Liu De-Fang. Computation of Gaussian beam scattering for larger particle. Acta Physica Sinica, 2005, 54(6): 2676-2679. doi: 10.7498/aps.54.2676
    [16] Bai Lu, Wu Zhen-Sen, Chen Hui, Guo Li-Xin. Scattering of fundamental Gaussian beam from on-axis cluster spheres. Acta Physica Sinica, 2005, 54(5): 2025-2029. doi: 10.7498/aps.54.2025
    [17] Xia Zhu-Hong, Fang Li, Zheng Hai-Yang, Hu Rui, Zhang Yu-Ying, Kong Xiang-He, Gu Xue-Jun, Zhu Yuan, Zhang Wei-Jun, Bao Jian, Xiong Lu-Yuan. Real-time measurement of the aerodynamic size of individual aerosol particles. Acta Physica Sinica, 2004, 53(1): 320-324. doi: 10.7498/aps.53.320
    [18] Chen Gang, Lou Zhi-Mei. Bound states of relativistic particles in a potential with four parameters for d iatomic molecules. Acta Physica Sinica, 2003, 52(5): 1075-1078. doi: 10.7498/aps.52.1075
    [19] Han Yi-ping, Wu Zhen-sen. Discussion of the Boundary Condition For Electromagnetic Scattering b y Spheroidal Particles. Acta Physica Sinica, 2000, 49(1): 57-60. doi: 10.7498/aps.49.57
    [20] RAO RUI-ZHONG. NUMERICAL ANALYSIS OF LIGHT SCATTERING BY RANDOMLY ORIENTED CUBIC PARTICLES. Acta Physica Sinica, 1998, 47(11): 1790-1797. doi: 10.7498/aps.47.1790
Metrics
  • Abstract views:  634
  • PDF Downloads:  21
  • Cited By: 0
Publishing process
  • Received Date:  15 August 2024
  • Accepted Date:  06 January 2025
  • Available Online:  24 January 2025
  • Published Online:  20 March 2025

/

返回文章
返回
Baidu
map