Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Theoretical study of 14CO2 spectrum measurement technology based on sub-Doppler wm-NICE-OHMS

LI Yong ZHOU Xiaobin ZHAO Gang YIN Runtao YANG Jiaqi YAN Xiaojuan MA Weiguang

Citation:

Theoretical study of 14CO2 spectrum measurement technology based on sub-Doppler wm-NICE-OHMS

LI Yong, ZHOU Xiaobin, ZHAO Gang, YIN Runtao, YANG Jiaqi, YAN Xiaojuan, MA Weiguang
cstr: 32037.14.aps.74.20241482
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • The massive emission of greenhouse gases, particularly CO2, has led to severe damage to the Earth’s ecological environment and poses a threat to human health. Many countries have therefore proposed policies to curb the greenhouse effect. Carbon monitoring is a critical prerequisite for realizing these goals, and tracking carbon emission sources can support the precise implementation and advancement of related policies more effectively. The contribution of fossil fuel combustion to greenhouse gas emissions can be inferred by detecting the abundance of 14C in carbon dioxide in a specific region. Conventional 14CO2 detection methods have significant drawbacks, including complicated operation, high cost and large equipment size. Laser absorption spectroscopy (LAS) offers advantages such as real-time, online in-situ measurement and simple operation, making it suitable for the online detection of isotopes. Among the various LAS techniques, noise immunity cavity enhanced optical heterodyne molecular spectroscopy (NICE-OHMS) is the most sensitive. This method integrates frequency modulation spectroscopy (FMS) into cavity enhanced spectroscopy (CES) to suppress the low-frequency noise while increasing the absorption paths, providing a minimum detectable absorption coefficient as low as 10–13. Additionally, the accumulation of high intracavity laser power in NICE-OHMS can stimulate saturation absorption, which has a narrow spectral width that can mitigate spectral overlap. In this work, we model the spectral signals of 14CO2 at different locations and select the transition line of 14CO2 at 2209.108 cm–1 as an optimal measurement target based on the principles of high-intensity and well-resolution. The theoretical analysis of the NICE-OHMS technique is then carried out, and theoretical simulations of a mixed sample of 14CO2 and its nearby interfering gases (13CO2, 12CO2, and N2O), are performed under the simulated experimental conditions. The results of the simulation show that the Doppler broadened spectral signal of 14CO2 is covered by the other gases’ signals with a very low amplitude, which is adverse to the detection of 14CO2. To eliminate the linear slope of the Doppler broadened signal and to further improve the signal-to-noise ratio, we perform 14CO2 spectral measurements by using wavelength-modulated NICE-OHMS (wm-NICE-OHMS). The results of the simulation show that the spectral lines are effectively separated, and the detection accuracy of the 14CO2 ratio is greatly improved. Finally, the effects of pressure and modulation index on the 14CO2 wm-NICE-OHMS signal are analyzed. The results show that when the pressure is 42 mTorr and the modulation index is 1.07, the signal amplitude of wm-NICE-OHMS reaches its maximum. This work lays a theoretical foundation for the high precision detection of 14CO2 in real-time environmental monitoring. The potential for large-scale application of wm-NICE-OHMS in carbon emission tracking is highlighted, providing a more cost-effective alternative to traditional detection methods. Furthermore, the technology is able to suppress spectral interference from other gases and achieve high resolution in 14CO2 measurements, which will greatly help monitor and reduce greenhouse gas emissions.
      Corresponding author: ZHAO Gang, gangzhao@sxu.edu.cn ; MA Weiguang, mwg@sxu.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant Nos. 2023YFF0614000, 2022YFC3703900), the National Natural Science Foundation of China (Grant Nos. 62327813, 62175139, 62375161, 61975103), the Shanxi Province Science and Technology Activities for Returned Overseas Researcher, China (Grant No. 20220001), and the Dreams Foundation of Jianghuai Advance Technology Center, China (Grant No. 2023-ZM01C007).
    [1]

    Zhao X, Ma X, Chen B, Shang Y, Song M 2022 Resour. Conserv. Recycl. 176 105959Google Scholar

    [2]

    Kong W, Wan F, Lei Y, Wang C, Sun H, Wang R, Chen W G 2024 Anal. Chem. 96 15313Google Scholar

    [3]

    Ge H, Kong W P, Wang R, Zhao G, Ma W G, Chen W G, Wan F 2023 Opt. Lett. 48 2186Google Scholar

    [4]

    Hou X L 2018 J. Radioanal. Nucl. Chem. 318 1597Google Scholar

    [5]

    Hua Q 2009 Quat. Geochronol. 4 378Google Scholar

    [6]

    Levin I, Naegler T, Kromer B, Diehl M, Francey R, Gomez-Pelaez A J, Steele P, Wagenbach D, Weller R, Worthy D 2010 Tellus B: Chem. Phys. Meteorol. 62 26Google Scholar

    [7]

    Povinec P 2018 J. Radioanal. Nucl. Chem. 318 1573Google Scholar

    [8]

    Maity A, Maithani S, Pradhan M 2021 Anal. Chem. 93 388Google Scholar

    [9]

    Lehmann B, Wahlen M, Zumbrunn R, Oeschger H, Schnell W 1977 Appl. Phys. 13 153Google Scholar

    [10]

    Labrie D, Reid J 1981 Appl. Phys. A 24 381Google Scholar

    [11]

    McCartt A, Jiang J 2022 ACS Sensors 7 3258Google Scholar

    [12]

    Zhang Z, Peng T, Nie X Y, Agarwal G S, Scully M O 2022 Light Sci. Appl. 11 274Google Scholar

    [13]

    Chen W P, Qiao S D, Lang Z, Jiang J C, He Y, Shi Y W, Ma Y F 2023 Opt. Lett. 48 3989Google Scholar

    [14]

    Hashimoto K, Nakamura T, Kageyama T, Badarla V R, Shimada H, Horisaki R, Ideguchi T 2023 Light Sci. Appl. 12 48Google Scholar

    [15]

    Ma Y F, Liang T T, Qiao S D, Liu X N, Lang Z T 2023 Ultrafast Sci. 3 0024Google Scholar

    [16]

    Qiao S D, Ma P Z, Tsepelin V, Han G W, Liang J X, Ren W, Zheng H D, Ma Y F 2023 Opt. Lett. 48 419Google Scholar

    [17]

    Zhang C, Qiao S D, He Y, Zhou S, Qi L, Ma Y F 2023 Appl. Phys. Lett. 122 241003Google Scholar

    [18]

    Lang Z T, Qian S D, Ma Y F 2023 Light Adv. Manuf. 4 233Google Scholar

    [19]

    Galli I, Pastor P C, Di Lonardo G, Fusina L, Giusfredi G, Mazzotti D, Tamassia F, De Natale P 2011 Mol. Phys. 109 2267Google Scholar

    [20]

    Terabayashi R, Saito K, Sonnenschein V, Okuyama Y, Iwamoto K, Mano K, Kawashima Y, Furumiya T, Tojo K, Ninomiya S, Yoshida K, Tomita H 2022 J. Appl. Phys. 132 083102Google Scholar

    [21]

    Jiao K, Gao J, Yang J Q, Zhao G, Shi Z, Wang X P, Zhu D, He H Y, Qing J, Yan X J, Ma W G, Jia S T 2024 Microwaves Opt. Technol. Lett. 66 33946Google Scholar

    [22]

    Galli I, Bartalini S, Ballerini R, Barucci M, Cancio P, De Pas M, Giusfredi G, Mazzotti D, Akikusa N, De Natale P 2016 Optica 3 385Google Scholar

    [23]

    齐汝宾, 赫树开, 李新田, 汪献忠 2015 光谱学与光谱分析 35 172Google Scholar

    Qi R B, He S K, Li X T, Wang X Z 2015 Spectrosc. Spect. Anal. 35 172Google Scholar

    [24]

    Jiang J, McCartt A D 2022 International Symposium on Molecular Spectroscopy Champaign-Urbana, Illinois, USA, June 20-24, 2022 p1

    [25]

    Zhou X B, Zhao G, Li Y, Cheng Z W, Jiao K, Zhang B F, Zhang Z H, Li Y K, Yan X J, Ma W G, Jia S T 2024 Opt. Lett. 49 202Google Scholar

    [26]

    Zak E J, Tennyson J, Polyansky O L, Lodi L, Zobov N F, Tashkun S A, Perevalov V I 2017 J. Quant. Spectrosc. Radiat. Transfer 189 267Google Scholar

    [27]

    Gagliardi G, Loock H-P 2014 Cavity-Enhanced Spectro- scopyand Sensing (Vol. 179) (Berlin: Springer Berlin Heidelberg) p231

    [28]

    Foltynowicz A, Ma W, Schmidt F M, Axner O 2009 J. Opt. Soc. Am. B: Opt. Phys. 26 1384Google Scholar

    [29]

    Ma W G, Foltynowicz A, Axner O 2008 J. Opt. Soc. Am. B: Opt. Phys. 25 1144Google Scholar

    [30]

    Foltynowicz A 2009 Ph. D. Dissertation (Sweden: Umeå University

    [31]

    Šimečková M, Jacquemart D, Rothman L, Gamache R, Goldman A 2006 J. Quant. Spectrosc. Radiat. Transfer 98 130Google Scholar

  • 图 1  不同波数的14CO2, N2O, 12CO2, 13CO2混合气体直接吸收模拟信号(黑线), 以及不同波数的14CO2直接吸收模拟信号(红线)

    Figure 1.  Directly absorbed analog signals for 14CO2, N2O, 12CO2, 13CO2 gas mixtures with different wave numbers (black line); directly absorbed analog signals for 14CO2 with different wave numbers (red line).

    图 2  NICE-OHMS原理图[27]

    Figure 2.  NICE-OHMS schematic[27].

    图 3  14CO2, N2O, 12CO213CO2混合气体的亚多普勒模拟信号

    Figure 3.  Sub-Doppler analog signal for gas mixtures such as 14CO2, N2O, 12CO2, 13CO2.

    图 4  14CO2, N2O, 12CO213CO2混合气体的wm-NICE-OHMS模拟信号

    Figure 4.  wm-NICE-OHMS analog signal for gas mixtures such as 14CO2, N2O, 12CO2, 13CO2.

    图 5  (a) β = 0.5, 1, 1.5时14CO2 wm-NICE-OHMS信号; (b) 14CO2 wm-NICE-OHMS信号幅度随调制系数β的变化

    Figure 5.  (a) 14CO2 wm-NICE-OHMS signal when β = 0.5, 1, 1.5; (b) variation of 14CO2 wm-NICE-OHMS signal amplitude with β.

    图 6  (a) 压强为100, 200, 300 mTorr时14CO2 wm-NICE-OHMS信号; (b) 14CO2 wm-NICE-OHMS信号幅度随压强的变化

    Figure 6.  (a) 14CO2 wm-NICE-OHMS signal when pressure is 100, 200, 300 mTorr; (b) variation of 14CO2 wm-NICE-OHMS signal amplitude with pressure.

    表 1  14CO2, N2O, 12CO213CO2光谱的其他参数

    Table 1.  Other parameters of 14CO2, N2O, 12CO2 and 13CO2 spectra.

    波数/cm–1 线强$ /({\rm cm}^{-1}{\cdot}{\rm molecule}^{-1}{\cdot}{\rm cm}^{-2}) $ 跃迁底态能量/cm–1 总配分函数
    14CO2 2209.107679 2.83×10–18 163.8828 2033.395
    12CO2 2209.124896 1.802×10–29 5785.2772 286.09
    13CO2 2209.115876 4.23×10–27 3394.9427 576.64
    13CO2 2209.11747 1.54×10–27 3648.8668 576.64
    N2O 2209.08543 3.41×10–21 1282.3324 4984.9
    N2O 2209.11444 6.61×10–22 654.1553 4984.9
    DownLoad: CSV
    Baidu
  • [1]

    Zhao X, Ma X, Chen B, Shang Y, Song M 2022 Resour. Conserv. Recycl. 176 105959Google Scholar

    [2]

    Kong W, Wan F, Lei Y, Wang C, Sun H, Wang R, Chen W G 2024 Anal. Chem. 96 15313Google Scholar

    [3]

    Ge H, Kong W P, Wang R, Zhao G, Ma W G, Chen W G, Wan F 2023 Opt. Lett. 48 2186Google Scholar

    [4]

    Hou X L 2018 J. Radioanal. Nucl. Chem. 318 1597Google Scholar

    [5]

    Hua Q 2009 Quat. Geochronol. 4 378Google Scholar

    [6]

    Levin I, Naegler T, Kromer B, Diehl M, Francey R, Gomez-Pelaez A J, Steele P, Wagenbach D, Weller R, Worthy D 2010 Tellus B: Chem. Phys. Meteorol. 62 26Google Scholar

    [7]

    Povinec P 2018 J. Radioanal. Nucl. Chem. 318 1573Google Scholar

    [8]

    Maity A, Maithani S, Pradhan M 2021 Anal. Chem. 93 388Google Scholar

    [9]

    Lehmann B, Wahlen M, Zumbrunn R, Oeschger H, Schnell W 1977 Appl. Phys. 13 153Google Scholar

    [10]

    Labrie D, Reid J 1981 Appl. Phys. A 24 381Google Scholar

    [11]

    McCartt A, Jiang J 2022 ACS Sensors 7 3258Google Scholar

    [12]

    Zhang Z, Peng T, Nie X Y, Agarwal G S, Scully M O 2022 Light Sci. Appl. 11 274Google Scholar

    [13]

    Chen W P, Qiao S D, Lang Z, Jiang J C, He Y, Shi Y W, Ma Y F 2023 Opt. Lett. 48 3989Google Scholar

    [14]

    Hashimoto K, Nakamura T, Kageyama T, Badarla V R, Shimada H, Horisaki R, Ideguchi T 2023 Light Sci. Appl. 12 48Google Scholar

    [15]

    Ma Y F, Liang T T, Qiao S D, Liu X N, Lang Z T 2023 Ultrafast Sci. 3 0024Google Scholar

    [16]

    Qiao S D, Ma P Z, Tsepelin V, Han G W, Liang J X, Ren W, Zheng H D, Ma Y F 2023 Opt. Lett. 48 419Google Scholar

    [17]

    Zhang C, Qiao S D, He Y, Zhou S, Qi L, Ma Y F 2023 Appl. Phys. Lett. 122 241003Google Scholar

    [18]

    Lang Z T, Qian S D, Ma Y F 2023 Light Adv. Manuf. 4 233Google Scholar

    [19]

    Galli I, Pastor P C, Di Lonardo G, Fusina L, Giusfredi G, Mazzotti D, Tamassia F, De Natale P 2011 Mol. Phys. 109 2267Google Scholar

    [20]

    Terabayashi R, Saito K, Sonnenschein V, Okuyama Y, Iwamoto K, Mano K, Kawashima Y, Furumiya T, Tojo K, Ninomiya S, Yoshida K, Tomita H 2022 J. Appl. Phys. 132 083102Google Scholar

    [21]

    Jiao K, Gao J, Yang J Q, Zhao G, Shi Z, Wang X P, Zhu D, He H Y, Qing J, Yan X J, Ma W G, Jia S T 2024 Microwaves Opt. Technol. Lett. 66 33946Google Scholar

    [22]

    Galli I, Bartalini S, Ballerini R, Barucci M, Cancio P, De Pas M, Giusfredi G, Mazzotti D, Akikusa N, De Natale P 2016 Optica 3 385Google Scholar

    [23]

    齐汝宾, 赫树开, 李新田, 汪献忠 2015 光谱学与光谱分析 35 172Google Scholar

    Qi R B, He S K, Li X T, Wang X Z 2015 Spectrosc. Spect. Anal. 35 172Google Scholar

    [24]

    Jiang J, McCartt A D 2022 International Symposium on Molecular Spectroscopy Champaign-Urbana, Illinois, USA, June 20-24, 2022 p1

    [25]

    Zhou X B, Zhao G, Li Y, Cheng Z W, Jiao K, Zhang B F, Zhang Z H, Li Y K, Yan X J, Ma W G, Jia S T 2024 Opt. Lett. 49 202Google Scholar

    [26]

    Zak E J, Tennyson J, Polyansky O L, Lodi L, Zobov N F, Tashkun S A, Perevalov V I 2017 J. Quant. Spectrosc. Radiat. Transfer 189 267Google Scholar

    [27]

    Gagliardi G, Loock H-P 2014 Cavity-Enhanced Spectro- scopyand Sensing (Vol. 179) (Berlin: Springer Berlin Heidelberg) p231

    [28]

    Foltynowicz A, Ma W, Schmidt F M, Axner O 2009 J. Opt. Soc. Am. B: Opt. Phys. 26 1384Google Scholar

    [29]

    Ma W G, Foltynowicz A, Axner O 2008 J. Opt. Soc. Am. B: Opt. Phys. 25 1144Google Scholar

    [30]

    Foltynowicz A 2009 Ph. D. Dissertation (Sweden: Umeå University

    [31]

    Šimečková M, Jacquemart D, Rothman L, Gamache R, Goldman A 2006 J. Quant. Spectrosc. Radiat. Transfer 98 130Google Scholar

  • [1] Qi Gang, Huang Yin-Bo, Ling Fei-Tong, Yang Jia-Qi, Huang Jun, Yang Tao, Zhang Lei-Lei, Lu Xing-Ji, Yuan Zi-Hao, Cao Zhen-Song. Measurement of Rb isotope ratio by atomic absorption spectroscopy with multi-microchannel array structure cavity. Acta Physica Sinica, 2023, 72(5): 053201. doi: 10.7498/aps.72.20221963
    [2] Bian Xiao-Ge, Zhou Sheng, Zhang Lei, He Tian-Bo, Li Jin-Song. NO2 gas detection based on standard sample regression algorithm and cavity enhanced spectroscopy. Acta Physica Sinica, 2021, 70(5): 050702. doi: 10.7498/aps.70.20201322
    [3] Jia Meng-Yuan, Zhao Gang, Zhou Yue-Ting, Liu Jian-Xin, Guo Song-Jie, Wu Yong-Qian, Ma Wei-Guang, Zhang Lei, Dong Lei, Yin Wang-Bao, Xiao Lian-Tuan, Jia Suo-Tang. Frequency locking of fiber laser to 1530.58 nm NH3 sub-Doppler saturation spectrum based on noise-immune cavity-enhanced optical heterodyne molecular spectroscopy technique. Acta Physica Sinica, 2018, 67(10): 104207. doi: 10.7498/aps.67.20172541
    [4] Zhao Yan-Dong, Fang Yong-Hua, Li Yang-Yu, Wu Jun, Li Da-Cheng, Cui Fang-Xiao, Liu Jia-Xiang, Wang An-Jing. Theoretical research on quartz enhanced photoacoustic spectroscopy base on the resonance in an elliptical cavity. Acta Physica Sinica, 2016, 65(19): 190701. doi: 10.7498/aps.65.190701
    [5] Sun Jun-Ping, Yang Jun, Lin Jian-Heng, Jiang Guo-Jian, Yi Xue-Juan, Jiang Peng-Fei. Theoretical model and simulation of ship underwater radiated noise. Acta Physica Sinica, 2016, 65(12): 124301. doi: 10.7498/aps.65.124301
    [6] Zou Da-Ren, Jin Shuo, Xu Ke, Zhao Zhen-Hua, Cheng Long, Yuan Yue. Simulation of the experiments on thermal desorption spectroscopy of hydrogen isotope in tungsten with the framework of rate theory. Acta Physica Sinica, 2015, 64(7): 072801. doi: 10.7498/aps.64.072801
    [7] Li Xiang-Xian, Xu Liang, Gao Min-Guang, Tong Jing-Jing, Feng Ming-Chun, Liu Jian-Guo, Liu Wen-Qing. Influence factors of quantitative analysis precision of greenhouse gases and carbon isotope ratio based on infrared spectroscopy. Acta Physica Sinica, 2015, 64(2): 024217. doi: 10.7498/aps.64.024217
    [8] Li Xiang-Xian, Xu Liang, Gao Min-Guang, Tong Jing-Jing, Jin Ling, Li Sheng, Wei Xiu-Li, Feng Ming-Chun. High-precision CO2 and 13CO2 analysis. Acta Physica Sinica, 2013, 62(18): 180203. doi: 10.7498/aps.62.180203
    [9] Li Xiang-Xian, Gao Min-Guang, Xu Liang, Tong Jing-Jing, Wei Xiu-Li, Feng Ming-Chun, Jin Ling, Wang Ya-Ping, Shi Jian-Guo. Carbon isotope ratio analysis in CO2 based on Fourier transform infrared spectroscopy. Acta Physica Sinica, 2013, 62(3): 030202. doi: 10.7498/aps.62.030202
    [10] Fang Wen-Hui, Li Zuo-Wei, Li Zhan-Long, Qu Guan-Nan, Ouyang Shun-Li, Men Zhi-Wei. Study of molecule spectra of carotenoid. Acta Physica Sinica, 2012, 61(15): 153301. doi: 10.7498/aps.61.153301
    [11] Wang Xiao-Lu, Linghu Rong-Feng, Yang Jian-hui, Lü Bing, Gao Tao, Yang Xiang-Dong. The calculation of excitation cross-sections of collisions between Ne isotope atoms with HF molecule. Acta Physica Sinica, 2012, 61(9): 093101. doi: 10.7498/aps.61.093101
    [12] Wang Gang, Fang Xiang-Zheng, Guo Jian-You. Analysis of shape evolution for Pt isotopes with relativistic mean field theory. Acta Physica Sinica, 2012, 61(10): 102101. doi: 10.7498/aps.61.102101
    [13] He Man-Li, Wang Xiao, Gao Si-Feng. Cross sections for the electron impact non-dissociative ion of hydrogen and its isotopic molecule. Acta Physica Sinica, 2012, 61(4): 043404. doi: 10.7498/aps.61.043404
    [14] Huang Chuan-Lu, Ding Yao-Gen, Wang Yong. The theory and computer simulation of beam-loading conductance in the double-gap coupled cavity. Acta Physica Sinica, 2011, 60(12): 128401. doi: 10.7498/aps.60.128401
    [15] Li Wen-Feng, Linghu Rong-Feng, Cheng Xin-Lu, Yang Xiang-Dong. Theoretical calculation of integral cross sections of rotational excitation for collisions in isotopes of He atom with Na2 molecule. Acta Physica Sinica, 2010, 59(7): 4591-4597. doi: 10.7498/aps.59.4591
    [16] Shen Guang-Xian, Wang Rong-Kai, Linghu Rong-Feng, Yang Xiang-Dong. Theoretical study on the partial cross section for the second vibrational excitation in He-H2 collisions. Acta Physica Sinica, 2009, 58(6): 3827-3832. doi: 10.7498/aps.58.3827
    [17] Shen Guang-Xian, Wang Rong-Kai, Linghu Rong-Feng, Yang Xiang-Dong. Theoretical calculation of the partial cross section in He-H2(D2,T2) collisions. Acta Physica Sinica, 2008, 57(1): 155-159. doi: 10.7498/aps.57.155
    [18] Zhang Yu-Mei, Xu Fu-Rong. Theoretical investigation of β- decays in neutron-rich nitrogen isotope. Acta Physica Sinica, 2008, 57(8): 4826-4832. doi: 10.7498/aps.57.4826
    [19] Li Yue, Yang Bao-Jun, Lin Hong-Bo, Liu Xiao-Hua. Simulation and theoretical analysis on detection of the frequency of weak harmonic signals based on a special chaotic system. Acta Physica Sinica, 2005, 54(5): 1994-1999. doi: 10.7498/aps.54.1994
    [20] YANG JIE-FU. STRICT LINEARITY GRADUATION FOR USING RADIOISO-TOPE TRANSIMISION LIQUID LEVEL AND ACTIVITY DISTRIBUTION OF RADIOACTIVE SOURCE. Acta Physica Sinica, 1985, 34(2): 205-212. doi: 10.7498/aps.34.205
Metrics
  • Abstract views:  480
  • PDF Downloads:  24
  • Cited By: 0
Publishing process
  • Received Date:  22 October 2024
  • Accepted Date:  17 December 2024
  • Available Online:  24 January 2025
  • Published Online:  20 March 2025

/

返回文章
返回
Baidu
map