Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Simulation of the experiments on thermal desorption spectroscopy of hydrogen isotope in tungsten with the framework of rate theory

Zou Da-Ren Jin Shuo Xu Ke Zhao Zhen-Hua Cheng Long Yuan Yue

Citation:

Simulation of the experiments on thermal desorption spectroscopy of hydrogen isotope in tungsten with the framework of rate theory

Zou Da-Ren, Jin Shuo, Xu Ke, Zhao Zhen-Hua, Cheng Long, Yuan Yue,
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Simulation of thermal desorption spectroscopy (TDS) of the hydrogen isotope-deuterium in tungsten has been investigated in this paper based on rate theory. Data are obtained using polycrystalline tungsten, which is under the irradiation of a plasma with an energy of 40 eV and a dose of 1× 1026 D/m2 at 520 K. By adjusting the trapping energy, trapping rate, and other parameters in the rate theory, we can obtain the TDS simulation spectrum, which coincides with the experimental results. It is found that there mainly exist three trapping states for deuterium in tungsten, whose trapping energies are 1.14, 1.40 and 1.70 eV, and the temperature peaks of them is 500, 600 and 730 K, respectively. These three trapping energies correspond to the energy for trapping the 3rd-5th hydrogen by vacancy (the zero point energy correction has been taken into account), the energy for trapping the 1st-2nd hydrogen by vacancy, and the energy for trapping the hydrogen by vacancy cluster, obtained from first-principle calculation, respectively. It is suggested that the vacancy and vacancy cluster are the main trapping objects for deuterium in tungsten, under the experimental condition mentioned above.
    • Funds: Project supported by the International Thermonuclear Experimental Reactor Program of the Ministry of Science and Technology of China (Grant No. 2013GB109002), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20111102110038), and the Scientific Research Foundation for Returned Scholars, Ministry of Education of China.
    [1]

    Maier H, Luthin J, Balden M, Linkeb J, Kocha F, Bolt H 2001 Surf. Coat. Technol. 142-144 733

    [2]

    Hao J K 2006 Fusion Materials (Beijing: Chemical Industry Press) pp86-99 (in Chinese) [郝嘉琨 2006 聚变堆材料(北京: 化学工业出版社) 第86–99 页]

    [3]

    Poon M, Haasz A A, Davis J W, Macaulay-Newcombe R G 2003 J. Nucl. Mater. 313 199

    [4]

    Jin X F, Feng Y Q, Zhusng C Q, Wang X 1984 Acta Phys. Sin. 33 754 (in Chinese) [金晓峰, 丰意青, 庄承群, 王迅 1984 33 754]

    [5]

    Xiang X, Chen C A, Liu K Z, Peng L X 2009 Rare Material 33 510 (in Chinese) [向鑫, 陈长安, 刘柯钊, 彭丽霞 2009 稀有金属 33 510]

    [6]

    Zheng Y Z, Qiu Y, Zhang P, Huang Y, Cui Z Y, Sun P, Yang Q W 2009 Chin. Phys. B 18 5406

    [7]

    Li C Y, Allain J P, Deng B Q 2007 Chin. Phys. 16 3312

    [8]

    Lu G H, Zhou H B, Becquart C S 2014 Nucl. Fusion 54 086001

    [9]

    Liu Y L, Zhang Y, Zhou H B, Lu G H, Liu F, Luo G N 2009 Phys. Rev. B 79 172103

    [10]

    Zhou H B, Liu Y L, Jin S, Zhang Y, Luo G N, Lu G H 2010 Nucl. Fusion 50 025016

    [11]

    Sun L, Jin S, Li X C, Zhang Y, Lu G H 2013 J. Nucl. Mater. 434 395

    [12]

    Zhou H B, Jin S, Zhang Y, Lu G H 2012 Phys. Rev. Lett. 109 135502

    [13]

    Sun L, Jin S, Zhou H B, Zhang Y, Zhang W Q, Ueda Y, Lee H T, Lu G H 2014 Phys. J.: Condens. Matter 26 395402

    [14]

    You Y W, Kong X S, Wu X B, Xu Y C, Fang Q F, Chen J L, Luo G N, Liu C S, Pan B C, Wang Z G 2013 AIP Advances 3 012118

    [15]

    Veen A V, Filius H A, Vries J D, Bijkerk K R, Rozing G J, Segers D 1988 Nucl J. Mater. 155-157 1113

    [16]

    Causey R A, Doerner R, Fraser H, Kolasinski R D, Smugeresky J, Umstadter K, Williams R 2009 J. Nucl. Mater. 390-391 717

    [17]

    Shimada M, Hatano Y, Calderon P, Oda T, Oya Y, Sokolov M, Zhang K, Cao G, Kolasinski R, Sharpe J P 2011 J. Nucl. Mater. 415 S667

    [18]

    Sang C F, Bonnin X, Warrier M J, Rai A, Schneider R, Sun J Z, Wang D Z 2012 Nucl. Fusion 52 043003

    [19]

    Ogorodnikova O V, Roth J, Mayer M 2008 J. Appl. Phys. 103 034902

    [20]

    Poon M, Haasz A A, Davis J W 2008 J. Nucl. Mater. 374 390

    [21]

    Causey R A 2002 J. Nucl. Mater 300 91

    [22]

    Li R S, Zhou Y L, Zhang B L, Deng A H, Hou Q 2011 Acta Phys. Sin. 60 046604 (in Chinese) [李仁顺, 周宇璐, 张宝玲, 邓爱红, 侯氢 2011 60 046604]

    [23]

    Tompkins F C 1978 Chemisorption of Gases on Metals (London: Academic Press) pp55-65

    [24]

    Ogorodnikova O V, Roth J, Mayer M 2003 J. Nucl. Mater 313-316 469

    [25]

    Spork C 2013 Ph. D. Dissertation (Utrecht: University of Utrecht)

    [26]

    Tyburska B, Alimov V K, Ogorodnikova O V, Schmid K, Ertl K 2009 J. Nucl. Mater 395 150

    [27]

    Hoen M H J, Tyburska-Pschel B, Ertl K, Mayer M, Rapp J, Kleyn A W, Zeijlmans van Emmichoven P A 2012 Nucl. Fusion 52 023008

    [28]

    Eleveld H 1996 Hydrogen and helium in selected fusion reactor materials (Delft: Technische Universiteit) pp73-80

    [29]

    Sun L, Jin S, Li X C, Zhang Y, Lu G H 2013 J. Nucl. Mater. 434 395

    [30]

    Patankar S V 1980 Numerical Heat Transfer and Fluid Flow (London: Hemisphere Publishing Corporation) pp148-185

  • [1]

    Maier H, Luthin J, Balden M, Linkeb J, Kocha F, Bolt H 2001 Surf. Coat. Technol. 142-144 733

    [2]

    Hao J K 2006 Fusion Materials (Beijing: Chemical Industry Press) pp86-99 (in Chinese) [郝嘉琨 2006 聚变堆材料(北京: 化学工业出版社) 第86–99 页]

    [3]

    Poon M, Haasz A A, Davis J W, Macaulay-Newcombe R G 2003 J. Nucl. Mater. 313 199

    [4]

    Jin X F, Feng Y Q, Zhusng C Q, Wang X 1984 Acta Phys. Sin. 33 754 (in Chinese) [金晓峰, 丰意青, 庄承群, 王迅 1984 33 754]

    [5]

    Xiang X, Chen C A, Liu K Z, Peng L X 2009 Rare Material 33 510 (in Chinese) [向鑫, 陈长安, 刘柯钊, 彭丽霞 2009 稀有金属 33 510]

    [6]

    Zheng Y Z, Qiu Y, Zhang P, Huang Y, Cui Z Y, Sun P, Yang Q W 2009 Chin. Phys. B 18 5406

    [7]

    Li C Y, Allain J P, Deng B Q 2007 Chin. Phys. 16 3312

    [8]

    Lu G H, Zhou H B, Becquart C S 2014 Nucl. Fusion 54 086001

    [9]

    Liu Y L, Zhang Y, Zhou H B, Lu G H, Liu F, Luo G N 2009 Phys. Rev. B 79 172103

    [10]

    Zhou H B, Liu Y L, Jin S, Zhang Y, Luo G N, Lu G H 2010 Nucl. Fusion 50 025016

    [11]

    Sun L, Jin S, Li X C, Zhang Y, Lu G H 2013 J. Nucl. Mater. 434 395

    [12]

    Zhou H B, Jin S, Zhang Y, Lu G H 2012 Phys. Rev. Lett. 109 135502

    [13]

    Sun L, Jin S, Zhou H B, Zhang Y, Zhang W Q, Ueda Y, Lee H T, Lu G H 2014 Phys. J.: Condens. Matter 26 395402

    [14]

    You Y W, Kong X S, Wu X B, Xu Y C, Fang Q F, Chen J L, Luo G N, Liu C S, Pan B C, Wang Z G 2013 AIP Advances 3 012118

    [15]

    Veen A V, Filius H A, Vries J D, Bijkerk K R, Rozing G J, Segers D 1988 Nucl J. Mater. 155-157 1113

    [16]

    Causey R A, Doerner R, Fraser H, Kolasinski R D, Smugeresky J, Umstadter K, Williams R 2009 J. Nucl. Mater. 390-391 717

    [17]

    Shimada M, Hatano Y, Calderon P, Oda T, Oya Y, Sokolov M, Zhang K, Cao G, Kolasinski R, Sharpe J P 2011 J. Nucl. Mater. 415 S667

    [18]

    Sang C F, Bonnin X, Warrier M J, Rai A, Schneider R, Sun J Z, Wang D Z 2012 Nucl. Fusion 52 043003

    [19]

    Ogorodnikova O V, Roth J, Mayer M 2008 J. Appl. Phys. 103 034902

    [20]

    Poon M, Haasz A A, Davis J W 2008 J. Nucl. Mater. 374 390

    [21]

    Causey R A 2002 J. Nucl. Mater 300 91

    [22]

    Li R S, Zhou Y L, Zhang B L, Deng A H, Hou Q 2011 Acta Phys. Sin. 60 046604 (in Chinese) [李仁顺, 周宇璐, 张宝玲, 邓爱红, 侯氢 2011 60 046604]

    [23]

    Tompkins F C 1978 Chemisorption of Gases on Metals (London: Academic Press) pp55-65

    [24]

    Ogorodnikova O V, Roth J, Mayer M 2003 J. Nucl. Mater 313-316 469

    [25]

    Spork C 2013 Ph. D. Dissertation (Utrecht: University of Utrecht)

    [26]

    Tyburska B, Alimov V K, Ogorodnikova O V, Schmid K, Ertl K 2009 J. Nucl. Mater 395 150

    [27]

    Hoen M H J, Tyburska-Pschel B, Ertl K, Mayer M, Rapp J, Kleyn A W, Zeijlmans van Emmichoven P A 2012 Nucl. Fusion 52 023008

    [28]

    Eleveld H 1996 Hydrogen and helium in selected fusion reactor materials (Delft: Technische Universiteit) pp73-80

    [29]

    Sun L, Jin S, Li X C, Zhang Y, Lu G H 2013 J. Nucl. Mater. 434 395

    [30]

    Patankar S V 1980 Numerical Heat Transfer and Fluid Flow (London: Hemisphere Publishing Corporation) pp148-185

  • [1] Zhang Xiang, Lu Ben-Quan, Li Ji-Guang, Zou Hong-Xin. Theoretical investigation on hyperfine structure and isotope shift for 5d106s 2S1/2→5d96s2 2D5/2 clock transition in Hg+. Acta Physica Sinica, 2019, 68(4): 043101. doi: 10.7498/aps.68.20182136
    [2] Lou Bing-Qiong, Li Fang, Wang Pei-Yan, Wang Li-Ming, Tang Yong-Bo. Ab initio calculation of hyperfine-structure constant A of Fr and evaluation of magnetic dipole moments of Fr isotopes. Acta Physica Sinica, 2019, 68(9): 093101. doi: 10.7498/aps.68.20190113
    [3] Yu Geng-Hua, Liu Hong, Zhao Peng-Yi, Xu Bing-Ming, Gao Dang-Li, Zhu Xiao-Ling, Yang Wei. Theoretical calculations on isotope shifts of Mg I by using relativistic multiconfiguration Dirac-Hartree-Fock method. Acta Physica Sinica, 2017, 66(11): 113101. doi: 10.7498/aps.66.113101
    [4] Wu Yu, Cai Shao-Hong, Deng Ming-Sen, Sun Guang-Yu, Liu Wen-Jiang, Cen Chao. Isotope effect on quantum thermal transport in a polyethylene chain. Acta Physica Sinica, 2017, 66(11): 116501. doi: 10.7498/aps.66.116501
    [5] Liang Li, Tan Xiao-Hua, Xiang Wei, Wang Yuan, Cheng Yan-Lin, Ma Ming-Wang. A molecular dynamics study of temperature and depth effect on helium bubble released from Ti surface. Acta Physica Sinica, 2015, 64(4): 046103. doi: 10.7498/aps.64.046103
    [6] Sun Ji-Zhong, Zhang Zhi-Hai, Liu Sheng-Guang, Wang De-Zhen. Molecular dynamics simulation of energetic hydrogen isotopes bombarding the crystalline graphite(001). Acta Physica Sinica, 2012, 61(5): 055201. doi: 10.7498/aps.61.055201
    [7] Wang Gang, Fang Xiang-Zheng, Guo Jian-You. Analysis of shape evolution for Pt isotopes with relativistic mean field theory. Acta Physica Sinica, 2012, 61(10): 102101. doi: 10.7498/aps.61.102101
    [8] Wang Xiao-Lu, Linghu Rong-Feng, Yang Jian-hui, Lü Bing, Gao Tao, Yang Xiang-Dong. The calculation of excitation cross-sections of collisions between Ne isotope atoms with HF molecule. Acta Physica Sinica, 2012, 61(9): 093101. doi: 10.7498/aps.61.093101
    [9] Chen Xing-Peng, Wang Nan. Ground state properties of Rn isotopes within the relativistic mean field theory. Acta Physica Sinica, 2011, 60(11): 112101. doi: 10.7498/aps.60.112101
    [10] Xu Yan, Zhao Juan, Wang Jun, Liu Fang, Meng Qing-Tian. Influence of the collision energy and isotopic variant on the stereodynamics of reaction H+BrF→HBr+F. Acta Physica Sinica, 2010, 59(6): 3885-3891. doi: 10.7498/aps.59.3885
    [11] Li Wen-Feng, Linghu Rong-Feng, Cheng Xin-Lu, Yang Xiang-Dong. Theoretical calculation of integral cross sections of rotational excitation for collisions in isotopes of He atom with Na2 molecule. Acta Physica Sinica, 2010, 59(7): 4591-4597. doi: 10.7498/aps.59.4591
    [12] Shen Guang-Xian, Wang Rong-Kai, Linghu Rong-Feng, Yang Xiang-Dong. Theoretical study on the partial cross section for the second vibrational excitation in He-H2 collisions. Acta Physica Sinica, 2009, 58(6): 3827-3832. doi: 10.7498/aps.58.3827
    [13] Sheng Zong-Qiang, Guo Jian-You. Systematic investigation of shape-coexistence in Se,Kr,Sr and Zr isotopes with relativistic mean field theory. Acta Physica Sinica, 2008, 57(3): 1557-1563. doi: 10.7498/aps.57.1557
    [14] Shen Guang-Xian, Wang Rong-Kai, Linghu Rong-Feng, Yang Xiang-Dong. Theoretical calculation of the partial cross section in He-H2(D2,T2) collisions. Acta Physica Sinica, 2008, 57(1): 155-159. doi: 10.7498/aps.57.155
    [15] Luo Wen-Lang, Ruan Wen, Zhang Li, Xie An-Dong, Zhu Zheng-He. Analytical potential energy function for tritium water molecule T2O(X1A1). Acta Physica Sinica, 2008, 57(8): 4833-4839. doi: 10.7498/aps.57.4833
    [16] Zhang Yu-Mei, Xu Fu-Rong. Theoretical investigation of β- decays in neutron-rich nitrogen isotope. Acta Physica Sinica, 2008, 57(8): 4826-4832. doi: 10.7498/aps.57.4826
    [17] Zhang Li, Zhu Zheng-He, Yang Ben-Fu, Long Xing-Gui, Luo Shun-Zhong. Electron-vibration approximation method for hydrogen isotope compounds TiH2,TiD2 and TiT2. Acta Physica Sinica, 2006, 55(10): 5418-5423. doi: 10.7498/aps.55.5418
    [18] Zhang Han-Jie, Yan Chao-Jun, Li Hai-Yang, He Pi-Mu, Pao Shi-Ning, Wang Jian, Xu Chun-Yi, Xu Ya-Bo. . Acta Physica Sinica, 2000, 49(3): 577-580. doi: 10.7498/aps.49.577
    [19] ZHUANG CHENG-QUN, FENG YI-QING, JIN XIAO-FENG, WANG XUN, CAI XIAN-E, YU LIAN-MIN. THERMAL DESORPTION SPECTRA OF PROPENE AND OXYGEN ADSORBED ON BLUE TUNGSTEN OXIDE. Acta Physica Sinica, 1985, 34(3): 341-347. doi: 10.7498/aps.34.341
    [20] JIN XIAO-FENG, FENG YI-QING, ZHUANG CHENG-QUN, WANG XUN. THE THERMAL DESORPTION SPECTRA STUDY OF HYDROGEN CHEMISORPTION ON Si(100) CLEAN SURFACE. Acta Physica Sinica, 1984, 33(6): 747-754. doi: 10.7498/aps.33.747
Metrics
  • Abstract views:  6664
  • PDF Downloads:  387
  • Cited By: 0
Publishing process
  • Received Date:  19 July 2014
  • Accepted Date:  15 October 2014
  • Published Online:  05 April 2015

/

返回文章
返回
Baidu
map