Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Measurement of Rb isotope ratio by atomic absorption spectroscopy with multi-microchannel array structure cavity

Qi Gang Huang Yin-Bo Ling Fei-Tong Yang Jia-Qi Huang Jun Yang Tao Zhang Lei-Lei Lu Xing-Ji Yuan Zi-Hao Cao Zhen-Song

Citation:

Measurement of Rb isotope ratio by atomic absorption spectroscopy with multi-microchannel array structure cavity

Qi Gang, Huang Yin-Bo, Ling Fei-Tong, Yang Jia-Qi, Huang Jun, Yang Tao, Zhang Lei-Lei, Lu Xing-Ji, Yuan Zi-Hao, Cao Zhen-Song
科大讯飞翻译 (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Rubidium (Rb) isotope analysis has important applications in geological exploration and environmental detection. Based on tunable laser atom absorption spectroscopy technology combined with thermal decomposition of the sample, a Rb isotope absorption spectroscopy measurement device is built to detect the Rb isotope ratio stability. And the atomic generator is designed by a new micro-channel array structure, which enhances atomic beam collimation capability, effectively suppresses the doppler effect of the spectrum, and improves the resolution of Rb isotope absorption spectrum. The device adopts tantalum metal to make the atomic generator with a diameter of 6 mm, and the micro-channel array with a diameter of 1 mm is stacked inside the atomic generator which can be heated resistively to 3000 ℃. In this experiment, the Rb carbonate sample is catalyzed to release Rb atom beam at a high temperature of 600 ℃, while a probe laser is used to obtain high resolution Rb absorption spectrum. The Rb isotope ratio (85Rb∶87Rb) of natural abundance Rb carbonate samples is 2.441±0.02 by combining the inversion of the spectral line parameters, the detection error is 5.9%, and the detection limit of 87Rb is 1.76‰ (3σ). The experimental results show that the multi-microchannel structure reduces the linewidth of Rb atoms by 450 MHz (half height full width) compared with the counterparts of the single-channel structure, which can effectively distinguish the absorption characteristics of Rb isotopes. The device has a high detection accuracy and a high spectral resolution, which provides a possibility for the metal isotope abundance analysis, and has a broad application prospect.
      Corresponding author: Cao Zhen-Song, zscao@aiofm.ac.cn
    • Funds: Project supported by the Major Scientific Research Instrument Development Project of National Natural Science Foundation of China (Grant No. 42027804) and the Youth Fund of Advanced Laser Technology Laboratory of Anhui Province, China (Grant No. AHL2021QN01).
    [1]

    李津, 唐索寒, 马健雄, 朱祥坤 2021 岩矿测试 40 627Google Scholar

    Li J, Tang S H, Ma J X, Zhu X K 2021 Rock and Mineral Analysis 40 627Google Scholar

    [2]

    张卓盈, 马金龙, 张乐, 曾提, 刘颖, 韦刚健 2020 地学前缘 27 123Google Scholar

    Zhang Z Y, Ma J L, Zhang L, Zeng P, Liu Y, Wei G J 2020 Earth Science Frontiers 27 123Google Scholar

    [3]

    邓爱民, 陈循, 张春华, 董理 2004 时间频率学报 27 138Google Scholar

    Deng A M, Chen X, Zhang C H, Dong L 2004 J. Time Frequency 27 138Google Scholar

    [4]

    King L A, Gornushkin I B, Pappas D, Smith B W, Winefordner J D 1999 Spectrochim. Acta Part B 54 1771Google Scholar

    [5]

    Waight T, Baker J, Willigers B 2002 Chemical Geology 186 99Google Scholar

    [6]

    Zhang Z Y, Ma J L, Le Zhang L, Liu Y, Wei G J 2018 J. Analy. Atomic Spectro. 33 322Google Scholar

    [7]

    Harilal S S, Brumfield B E, LaHaye N L, Hartig K C, Phillips M C 2018 Appl. Phys. Rev. 5 21301Google Scholar

    [8]

    叶浩, 黄印博, 王琛, 刘国荣, 卢兴吉, 曹振松, 黄尧, 齐刚, 梅海平 2021 70 163201Google Scholar

    Ye H, Huang Y B, Wang C, Liu G R, Lu X J, Cao Z S, Huang Y, Qi G, Mei H P 2021 Acta Phys. Sin. 70 163201Google Scholar

    [9]

    Lebedev V, Bartlett J H, Castro A 2018 J. Analy. Atomic Spectrom. 33 1862Google Scholar

    [10]

    Majumder A, Jana B, Kathar R T, Das A K, Mago V K 2009 Vacuum 83 989Google Scholar

    [11]

    北京师范大学, 华中师范大学, 南京师范大学 2020 无机化学 (上卷) (北京: 高等教育出版社) 第233页

    Peking Normal University, Central China Normal University, Nanjing Normal University 2020 Inorganic Chemistry (Vol. 1) (Beijing: Higher Education Press) p233 (in Chinese)

    [12]

    Shpilrai E, Nikanoro E 1971 High Temperature 9 393

    [13]

    Jana B, Majumder A, Thakur K B, Das A K 2013 Rev. Sci. Instrum. 84 106113Google Scholar

    [14]

    Haynes W M 2016 CRC Handbook of Chemistry and Physics (97th Ed.) (Boca Raton: CRC Press) pp2005–2006

    [15]

    Gupta M, Randhawa B S 2012 J. Analy. Appl. Pyroly. 95 25Google Scholar

    [16]

    陶雷刚 2018 博士学位论文 (合肥: 中国科学技术大学)

    Tao L G 2018 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese)

    [17]

    Senaratne R, Rajagopal S V, Geiger Z A, Fujiwara K M, Lebedev V, Weld D M 2015 Rev. Sci. Instrum. 86 023105Google Scholar

    [18]

    孙明国, 马宏亮, 刘强, 曹振松, 王贵师, 刘锟, 黄印博, 高晓明, 饶瑞中 2018 67 064206Google Scholar

    Sun M G, Ma H L, Liu Q, Cao Z S, Wang G S, Liu K, Huang Y B, Gao X M, Rao R Z 2018 Acta Phys. Sin. 67 064206Google Scholar

    [19]

    Steck D A 2021 Rubidium 85 D Line Data [2021-7-9]

    [20]

    Steck D A 2021 Rubidium 87 D Line Data [2021-7-9]

  • 图 1  Rb同位素比测量实验装置

    Figure 1.  Experimental layout for Rb isotope ratio measurement.

    图 2  (a) 真空电极腔结构示意图; (b) 双端子电极结构示意图

    Figure 2.  (a) Schematic diagram of vacuum electrode chamber structure; (b) schematic diagram of double terminal electrode structure.

    图 3  (a) 原子发生器结构图; (b) 20 A下原子发生器温度时间变化曲线

    Figure 3.  (a) Structure of the atomic generator; (b) time variation curve of the atomic generator temperature at 20 A.

    图 4  高温下Rb2CO3的分解过程

    Figure 4.  Reaction process of Rb2CO3 at high temperature.

    图 5  (a) 不同口径原子发生器温度随电流变化趋势; (b) 不同口径原子发生器在600 ℃的吸收信号对比

    Figure 5.  (a) Trend of temperature of the atomic generator with current for different diameters; (b) comparison of absorption signal of the atomic generator with different diameters at 600 ℃.

    图 6  (a) 87Rb吸收信号随温度的变化曲线; (b) Rb饱和蒸气压随温度的变化曲线

    Figure 6.  (a) The variation curve of 87Rb absorption signal with temperature; (b) the variation curve of Rb saturated vapor pressure with temperature.

    图 7  (a) 单通道发散角结构示意图; (b) 多微管发散角结构示意图

    Figure 7.  (a) Schematic diagram of single-channel divergence angle structure; (b) schematic diagram of multi-microchannel divergence angle structure.

    图 8  多微管与单通道结构Rb的吸收光谱展宽对比

    Figure 8.  Comparison of absorption spectrum broadening of Rb in multi-microchannel and single-channel.

    图 9  (a) Rb原子吸收光谱信噪比随平均次数的变化; (b) 平衡探测前后基线波动对比

    Figure 9.  (a) The variation curve of SNR of Rb absorption spectrum with average times; (b) comparison of baseline fluctuations before and after balance detection.

    图 10  (a) 600 ℃时Rb原子吸收光谱; (b) 85Rb∶87Rb吸收光谱信号稳定性

    Figure 10.  (a) Absorption spectrum of Rb at 600 ℃; (b) the stability of 85Rb∶87Rb absorption spectrum signal.

    表 1  部分高熔点材料特性

    Table 1.  Characteristics of several high melting point materials.

    金属
    熔点/℃3000342026001660
    电阻率/(Ω·m)13.100.055.3445.20
    断面收缩率/%86106064
    DownLoad: CSV
    Baidu
  • [1]

    李津, 唐索寒, 马健雄, 朱祥坤 2021 岩矿测试 40 627Google Scholar

    Li J, Tang S H, Ma J X, Zhu X K 2021 Rock and Mineral Analysis 40 627Google Scholar

    [2]

    张卓盈, 马金龙, 张乐, 曾提, 刘颖, 韦刚健 2020 地学前缘 27 123Google Scholar

    Zhang Z Y, Ma J L, Zhang L, Zeng P, Liu Y, Wei G J 2020 Earth Science Frontiers 27 123Google Scholar

    [3]

    邓爱民, 陈循, 张春华, 董理 2004 时间频率学报 27 138Google Scholar

    Deng A M, Chen X, Zhang C H, Dong L 2004 J. Time Frequency 27 138Google Scholar

    [4]

    King L A, Gornushkin I B, Pappas D, Smith B W, Winefordner J D 1999 Spectrochim. Acta Part B 54 1771Google Scholar

    [5]

    Waight T, Baker J, Willigers B 2002 Chemical Geology 186 99Google Scholar

    [6]

    Zhang Z Y, Ma J L, Le Zhang L, Liu Y, Wei G J 2018 J. Analy. Atomic Spectro. 33 322Google Scholar

    [7]

    Harilal S S, Brumfield B E, LaHaye N L, Hartig K C, Phillips M C 2018 Appl. Phys. Rev. 5 21301Google Scholar

    [8]

    叶浩, 黄印博, 王琛, 刘国荣, 卢兴吉, 曹振松, 黄尧, 齐刚, 梅海平 2021 70 163201Google Scholar

    Ye H, Huang Y B, Wang C, Liu G R, Lu X J, Cao Z S, Huang Y, Qi G, Mei H P 2021 Acta Phys. Sin. 70 163201Google Scholar

    [9]

    Lebedev V, Bartlett J H, Castro A 2018 J. Analy. Atomic Spectrom. 33 1862Google Scholar

    [10]

    Majumder A, Jana B, Kathar R T, Das A K, Mago V K 2009 Vacuum 83 989Google Scholar

    [11]

    北京师范大学, 华中师范大学, 南京师范大学 2020 无机化学 (上卷) (北京: 高等教育出版社) 第233页

    Peking Normal University, Central China Normal University, Nanjing Normal University 2020 Inorganic Chemistry (Vol. 1) (Beijing: Higher Education Press) p233 (in Chinese)

    [12]

    Shpilrai E, Nikanoro E 1971 High Temperature 9 393

    [13]

    Jana B, Majumder A, Thakur K B, Das A K 2013 Rev. Sci. Instrum. 84 106113Google Scholar

    [14]

    Haynes W M 2016 CRC Handbook of Chemistry and Physics (97th Ed.) (Boca Raton: CRC Press) pp2005–2006

    [15]

    Gupta M, Randhawa B S 2012 J. Analy. Appl. Pyroly. 95 25Google Scholar

    [16]

    陶雷刚 2018 博士学位论文 (合肥: 中国科学技术大学)

    Tao L G 2018 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese)

    [17]

    Senaratne R, Rajagopal S V, Geiger Z A, Fujiwara K M, Lebedev V, Weld D M 2015 Rev. Sci. Instrum. 86 023105Google Scholar

    [18]

    孙明国, 马宏亮, 刘强, 曹振松, 王贵师, 刘锟, 黄印博, 高晓明, 饶瑞中 2018 67 064206Google Scholar

    Sun M G, Ma H L, Liu Q, Cao Z S, Wang G S, Liu K, Huang Y B, Gao X M, Rao R Z 2018 Acta Phys. Sin. 67 064206Google Scholar

    [19]

    Steck D A 2021 Rubidium 85 D Line Data [2021-7-9]

    [20]

    Steck D A 2021 Rubidium 87 D Line Data [2021-7-9]

Metrics
  • Abstract views:  5440
  • PDF Downloads:  90
  • Cited By: 0
Publishing process
  • Received Date:  14 October 2022
  • Accepted Date:  14 December 2022
  • Available Online:  05 January 2023
  • Published Online:  05 March 2023

/

返回文章
返回
Baidu
map