-
Underwater wireless optical communication (UWOC) possesses significant advantages, such as high bandwidth, low latency, and low power consumption, making it a key technology for building information networks in marine environments. However, due to the scattering effect of seawater, some photons carrying information inevitably scatter out of their predetermined paths, leading to the possibility for information leakage. Therefore, we propose a physical-layer security analysis model for UWOC systems based on the wiretap channel model. The model evaluates the security of the communication system by calculating the capacity difference between the legitimate channel and the eavesdropping channel in the UWOC system. Specifically, the model first constructs the three-dimensional intensity distribution of scattered photons in the underwater channel via Monte Carlo simulations and experimental measurements. Then, it calculates the capacities of both the legitimate and eavesdropping channels based on the decoding results. Finally, the three-dimensional distribution of secrecy capacity is derived to assess the security of the communication system. In this work this model is used to analyze the security of the UWOC system in clear seawater environments. The results show that the secrecy capacity of the system is zero within a certain range near the transmission path, demonstrating that scattered photons can cause information leakage. We recommend that, in practical applications, monitoring the non-signal transmission area near the transmitter is essential to ensure communication security. This research provides a solution for analyzing the quantitative security of UWOC, which can strongly support the design of UWOC systems and encoding/decoding schemes.
-
Keywords:
- underwater wireless optical communication /
- physical-layer security /
- scattered photons /
- Monte Carlo /
- secrecy capacity
[1] Qi Z R, Zhao X Y, Pompili D 2023 IEEE Trans. Commun. 71 7163
Google Scholar
[2] Naik R P, Salman M, Bolboli J, Shetty C S, Chung W Y 2024 IEEE Trans. Veh. Technol. 73 8420
Google Scholar
[3] Esmaiel H, Sun H X 2024 Sensors 24 7075
Google Scholar
[4] 郑晓桐, 郭立新, 程明建, 李江挺 2018 67 214206
Google Scholar
Zheng X T, Guo L X, Cheng M J, Li J T 2018 Acta Phys. Sin. 67 214206
Google Scholar
[5] Abd El-Mottaleb S A, Singh M, Armghan A, Atieh A, Aly M H 2025 Opt. Commun. 574 131204
Google Scholar
[6] Zhang L, Wang Z M, Wei Z X, Chen C, Wei G D, Fu H Y, Dong Y H 2020 Opt. Express 28 31796
Google Scholar
[7] Yan Z Q, Hu C Q, Li Z M, Li Z Y, Hang Z, Xian M J 2021 Photonics Res. 9 2360
Google Scholar
[8] Fei C, Wang Y, Du J, Chen R L, Lv N F, Zhang G W, Tian J H, Hong X J, He S L 2022 Opt. Express 30 2326
Google Scholar
[9] Nath N, Chouhan S 2024 IEEE Internet Things J. 11 39721
Google Scholar
[10] Li S, Wang P, Li G, Zhang X, Li H, Zhou B, Yang T 2023 Opt. Express 31 34729
Google Scholar
[11] Kong M W, Wang J L, Chen Y F, Ali T, Sarwar R, Qiu Y, Wang S L, Han J, Xu J 2017 Opt. Express 25 21509
Google Scholar
[12] Fu X Q, Li H W, Shi J H, Li T, Bao W S 2025 Sci. China-Phys. Mech. Astron. 68 210314
Google Scholar
[13] Li Z F, Kong X H, Zhang J, Shao L D, Zhang D J, Liu J, Wang X, Zhu W R, Qiu C W 2022 Laser Photon. Rev. 16 2200113
Google Scholar
[14] Wang H M, Zhang X, Jiang J C 2019 IEEE Wirel. Commun. 26 32
Google Scholar
[15] Wyner A D 1975 Bell Syst. Tech. J. 54 1355
Google Scholar
[16] Guan K, Cho J, Winzer P J 2018 Opt. Commun. 408 31
Google Scholar
[17] Shannon C E, Weaver W 1949 The Mathematical Theory of Information (Urbana: University of Illinois Press) p145
[18] Williamson C A, Hollins R C 2022 Appl. Opt. 61 9951
Google Scholar
[19] Zhang J L, Kou L L, Yang Y, He F T, Duan Z L 2020 Opt. Commun. 475 126214
Google Scholar
[20] Ramley I, Alzayed H M, Al-Hadeethi Y, Chen M G, Barasheed A Z 2024 Mathematics 12 3904
Google Scholar
[21] Wen H, Yin H X, Ji X Y, Huang A 2023 Appl. Opt. 62 6883
Google Scholar
[22] Gabriel C, Khalighi M A, Bourennane S, Léon P, Rigaud V 2013 J. Opt. Commun. Netw. 5 1
Google Scholar
[23] Hollins R C, Williamson C A 2023 Appl. Opt. 62 6218
Google Scholar
[24] Hu J Y, Yu B, Jing M Y, Xiao L T, Jia S T, Qin G Q, Long G L 2016 Light Sci. Appl. 5 e16144
Google Scholar
[25] Hu J Y, Jing M Y, Zhang G F, Qin C B, Xiao L T, Jia S T 2018 Opt. Express 26 20835
Google Scholar
[26] Hoang T M, Vahid A, Tuan H D, Hanzo L 2024 IEEE Commun. Surv. Tutor. 26 1830
Google Scholar
[27] Illi E, Qaraqe M, Althunibat S, Alhasanat A, Alsafasfeh M, de Ree M, Mantas G, Rodriguez J, Aman W, Al-Kuwari S 2024 IEEE Commun. Surv. Tutor. 26 347
Google Scholar
[28] 韩彦睿, 李伟, 臧延华, 杨昌钢, 陈瑞云, 张国峰, 秦成兵, 胡建勇, 肖连团 2023 72 160301
Google Scholar
Han Y R, Li W, Zang Y H, Yang C G, Chen R Y, Zhang G F, Qin C B, Hu J Y, Xiao L T 2023 Acta Phys. Sin. 72 160301
Google Scholar
[29] Rioul O, Magossi J C 2014 Entropy 16 4892
Google Scholar
[30] Solonenko M G, Mobley C D 2015 Appl. Opt. 54 5392
Google Scholar
[31] Liu X Y, Yang S H, Gao Y Z, Li J, Li C F, Xu Z, Fan C Y 2024 Opt. Commun. 569 130747
Google Scholar
-
图 6 远洋清澈海水环境下窃听者散射光子强度的模拟仿真 (a) 散射光子的三维散点分布图; (b) 3°, 6°, 9°径向下散射光子强度的衰减曲线, 其可通过单指数衰减函数拟合; (c) 散射光子等光强曲线, 其可通过双指数函数拟合; (d) 散射光子强度三维空间分布图, 由于光子分布沿光束传输方向具有轴对称性, 图中以二维剖面图的形式展示光子的三维分布
Figure 6. Simulation of scattered photon intensity in clear seawater: (a) Scatter plot of scattered photon intensity; (b) intensity decay curves of scattered photon at radial angles of 3°, 6°, and 9°, which can be fitted by single exponential decay function; (c) contours of scattered photon intensity, which can be fitted by double exponential function; (d) intensity distribution map of scattered photons by simulation, the three-dimensional spatial distribution of scattered photon intensity is represented in the form of a two-dimensional profile due to the axial symmetry of photon distribution along the beam propagation direction.
图 7 UWOC系统装置示意图 (a) 发射端模块; (b) 接收端模块; (c) 窃听者模块; (d) 水下光程池; LD为激光二极管, AWG为任意波形发生器, SPAD为单光子雪崩二极管, TCSPC为时间相关单光子计数采集卡
Figure 7. UWOC system: (a) Transmitter; (b) receiver; (c) eavesdropper; (d) water tank. LD represents laser diode, AWG represents arbitrary waveform generator, SPAD represents single-photon avalanche diode, TCSPC represents time-correlated single photon counting.
表 1 蒙特卡罗仿真参数
Table 1. Parameters for the Monte Carlo simulation.
参数 数值 参数 数值 光子数 107 接收孔径/mm 50 光斑直径/mm 25 接收器视场角/(°) 4 光束发散角/rad 10–4 光子阈值 10–5 吸收系数a/m–1 0.065 散射系数b/m–1 0.195 -
[1] Qi Z R, Zhao X Y, Pompili D 2023 IEEE Trans. Commun. 71 7163
Google Scholar
[2] Naik R P, Salman M, Bolboli J, Shetty C S, Chung W Y 2024 IEEE Trans. Veh. Technol. 73 8420
Google Scholar
[3] Esmaiel H, Sun H X 2024 Sensors 24 7075
Google Scholar
[4] 郑晓桐, 郭立新, 程明建, 李江挺 2018 67 214206
Google Scholar
Zheng X T, Guo L X, Cheng M J, Li J T 2018 Acta Phys. Sin. 67 214206
Google Scholar
[5] Abd El-Mottaleb S A, Singh M, Armghan A, Atieh A, Aly M H 2025 Opt. Commun. 574 131204
Google Scholar
[6] Zhang L, Wang Z M, Wei Z X, Chen C, Wei G D, Fu H Y, Dong Y H 2020 Opt. Express 28 31796
Google Scholar
[7] Yan Z Q, Hu C Q, Li Z M, Li Z Y, Hang Z, Xian M J 2021 Photonics Res. 9 2360
Google Scholar
[8] Fei C, Wang Y, Du J, Chen R L, Lv N F, Zhang G W, Tian J H, Hong X J, He S L 2022 Opt. Express 30 2326
Google Scholar
[9] Nath N, Chouhan S 2024 IEEE Internet Things J. 11 39721
Google Scholar
[10] Li S, Wang P, Li G, Zhang X, Li H, Zhou B, Yang T 2023 Opt. Express 31 34729
Google Scholar
[11] Kong M W, Wang J L, Chen Y F, Ali T, Sarwar R, Qiu Y, Wang S L, Han J, Xu J 2017 Opt. Express 25 21509
Google Scholar
[12] Fu X Q, Li H W, Shi J H, Li T, Bao W S 2025 Sci. China-Phys. Mech. Astron. 68 210314
Google Scholar
[13] Li Z F, Kong X H, Zhang J, Shao L D, Zhang D J, Liu J, Wang X, Zhu W R, Qiu C W 2022 Laser Photon. Rev. 16 2200113
Google Scholar
[14] Wang H M, Zhang X, Jiang J C 2019 IEEE Wirel. Commun. 26 32
Google Scholar
[15] Wyner A D 1975 Bell Syst. Tech. J. 54 1355
Google Scholar
[16] Guan K, Cho J, Winzer P J 2018 Opt. Commun. 408 31
Google Scholar
[17] Shannon C E, Weaver W 1949 The Mathematical Theory of Information (Urbana: University of Illinois Press) p145
[18] Williamson C A, Hollins R C 2022 Appl. Opt. 61 9951
Google Scholar
[19] Zhang J L, Kou L L, Yang Y, He F T, Duan Z L 2020 Opt. Commun. 475 126214
Google Scholar
[20] Ramley I, Alzayed H M, Al-Hadeethi Y, Chen M G, Barasheed A Z 2024 Mathematics 12 3904
Google Scholar
[21] Wen H, Yin H X, Ji X Y, Huang A 2023 Appl. Opt. 62 6883
Google Scholar
[22] Gabriel C, Khalighi M A, Bourennane S, Léon P, Rigaud V 2013 J. Opt. Commun. Netw. 5 1
Google Scholar
[23] Hollins R C, Williamson C A 2023 Appl. Opt. 62 6218
Google Scholar
[24] Hu J Y, Yu B, Jing M Y, Xiao L T, Jia S T, Qin G Q, Long G L 2016 Light Sci. Appl. 5 e16144
Google Scholar
[25] Hu J Y, Jing M Y, Zhang G F, Qin C B, Xiao L T, Jia S T 2018 Opt. Express 26 20835
Google Scholar
[26] Hoang T M, Vahid A, Tuan H D, Hanzo L 2024 IEEE Commun. Surv. Tutor. 26 1830
Google Scholar
[27] Illi E, Qaraqe M, Althunibat S, Alhasanat A, Alsafasfeh M, de Ree M, Mantas G, Rodriguez J, Aman W, Al-Kuwari S 2024 IEEE Commun. Surv. Tutor. 26 347
Google Scholar
[28] 韩彦睿, 李伟, 臧延华, 杨昌钢, 陈瑞云, 张国峰, 秦成兵, 胡建勇, 肖连团 2023 72 160301
Google Scholar
Han Y R, Li W, Zang Y H, Yang C G, Chen R Y, Zhang G F, Qin C B, Hu J Y, Xiao L T 2023 Acta Phys. Sin. 72 160301
Google Scholar
[29] Rioul O, Magossi J C 2014 Entropy 16 4892
Google Scholar
[30] Solonenko M G, Mobley C D 2015 Appl. Opt. 54 5392
Google Scholar
[31] Liu X Y, Yang S H, Gao Y Z, Li J, Li C F, Xu Z, Fan C Y 2024 Opt. Commun. 569 130747
Google Scholar
Catalog
Metrics
- Abstract views: 578
- PDF Downloads: 42
- Cited By: 0