-
Underwater wireless optical communication (UWOC) provides significant advantages, including high bandwidth, low latency, and low power consumption, establishing it as a crucial technology for building information networks in marine environments. However, due to the scattering effect of seawater, some photons carrying information are inevitably scattered out of their predetermined paths, resulting in the potential for information leakage. Therefore, we propose a physical-layer security analysis model for UWOC systems based on the wiretap channel model. The model evaluates the security of the communication system by calculating the capacity difference between the legitimate channel and the eavesdropping channel in the UWOC system. Specifically, the model first constructs the three-dimensional intensity distribution of scattered photons in the underwater channel via Monte Carlo simulations and experimental measurements. Then, it calculates the capacities of both the legitimate and eavesdropping channels based on the decoding results. Finally, the three-dimensional distribution of secrecy capacity is derived to assess the security of the communication system. This article applies this model to analyze the security of the UWOC system in clear seawater environments. It is found that the secrecy capacity of the system is zero within a certain range near the transmission path, demonstrating that scattered photons can cause information leakage. We recommend that, in practical applications, monitoring the non-signal transmission area near the transmitter is essential to ensure communication security. This research provides a solution for the quantitative security analysis of UWOC, which can strongly support the design of UWOC systems and encoding/decoding schemes.
-
Keywords:
- Underwater wireless optical communication /
- Physical-layer security /
- Scattered photons /
- Monte Carlo /
- Secrecy capacity
-
[1] Qi Z R, Zhao X Y, Pompili D 2023 IEEE Trans. Commun. 71 7163
[2] Naik R P, Salman M, Bolboli J, Shetty C S, Chung W Y 2024 IEEE Trans. Veh. Technol. 73 8420
[3] Esmaiel H, Sun H X 2024 Sensors 24 7075
[4] Zheng X T, Guo L X, Cheng M J, Li J T 2018 Acta Phys. Sin. 67 214206(in Chinese) [郑晓桐,郭立新,程明建,李江挺2018 67214206]
[5] Abd El Mottaleb S A, Singh M, Armghan A, Atieh A, Aly M H 2025 Opt. Commun. 574 131204
[6] Zhang L, Wang Z M, Wei Z X, Chen C, Wei G D, Fu H Y, Dong Y H 2020 Opt. Express 28 31796
[7] Yan Z Q, Hu C Q, Li Z M, Li Z Y, Hang Z, Xian M J 2021 Photonics Res. 9 2360
[8] Fei C, Wang Y, Du J, Chen R L, Lv N F, Zhang G W, Tian J H, Hong X J, He S L 2022 Opt. Express 30 2326
[9] Nath N, Chouhan S 2024 IEEE Internet Things J. 11 39721
[10] Li S, Wang P, Li G, Zhang X, Li H, Zhou B, Yang T 2023 Opt. Express 31 34729
[11] Kong M W, Wang J L, Chen Y F, Ali T, Sarwar R, Qiu Y, Wang S L, Han J, Xu J 2017 Opt. Express 25 21509
[12] Fu X Q, Li H W, Shi J H, Li T, Bao W S 2025 Sci. China-Phys. Mech. Astron. 68 210314
[13] Li Z F, Kong X H, Zhang J, Shao L D, Zhang D J, Liu J, Wang X, Zhu W R, Qiu C W 2022 Laser Photon. Rev. 16 2200113
[14] Wang H M, Zhang X, Jiang J C 2019 IEEE Wirel. Commun. 26 32
[15] Wyner A D 1975 Bell Syst. Tech. J. 54 1356
[16] Guan K, Cho J, Winzer P J 2018 Opt. Commun. 408 31
[17] Shannon C E, Weaver W 1949The Mathematical Theory of Information (Urbana: University of Illinois Press) p145
[18] Williamson C A, Hollins R C 2022 Appl. Opt. 61 9951
[19] Zhang J L, Kou L L, Yang Y, He F T, Duan Z L 2020 Opt. Commun. 475 126214
[20] Ramley I, Alzayed H M, Al-Hadeethi Y, Chen M G, Barasheed A Z 2024 Mathematics 12 3904
[21] Wen H, Yin H X, Ji X Y, Huang A 2023 Appl. Opt. 62 6883
[22] Gabriel C, Khalighi M A, Bourennane S, Léon P, Rigaud V 2013 J. Opt. Commun. Netw. 5 1
[23] Hollins R C, Williamson C A 2023 Appl. Opt. 62 6218
[24] Hu J Y, Yu B, Jing M Y, Xiao L T, Jia S T, Qin G Q, Long G L 2016 Light Sci. Appl. 5 e16144
[25] Hu J Y, Jing M Y, Zhang G F, Qin C B, Xiao L T, Jia S T 2018 Opt. Express 26 20835
[26] Hoang T M, Vahid A, Tuan H D, Hanzo L 2024 IEEE Commun. Surv. Tutor. 26 1830
[27] Illi E, Qaraqe M, Althunibat S, Alhasanat A, Alsafasfeh M, de Ree M, Mantas G, Rodriguez J, Aman W, Al-Kuwari S 2024 IEEE Commun. Surv. Tutor. 26 347
[28] Han Y R, Li W, Zang Y H, Yang C G, Chen R Y, Zhang G F, Qin C B, Hu J Y, Xiao L T 2023 Acta Phys. Sin. 72 160301(in Chinese) [韩彦睿, 李伟, 臧延华, 杨昌钢, 陈瑞云, 张国峰, 秦成兵, 胡建勇, 肖连团2023 72160301]
[29] Rioul O, Magossi J C 2014 Entropy 16 4892
[30] Solonenko M G, Mobley C D 2015 Appl. Opt. 54 5392
[31] Liu X Y, Yang S H, Gao Y Z, Li J, Li C F, Xu Z, Fan C Y 2024 Opt. Commun. 569 130747
Metrics
- Abstract views: 172
- PDF Downloads: 11
- Cited By: 0