搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钕-150同位素三步选择性光电离理论研究

王立德 张钧尧 卢肖勇

引用本文:
Citation:

钕-150同位素三步选择性光电离理论研究

王立德, 张钧尧, 卢肖勇

The numerical studies of three-step selective photoionization of Neodymium-150 isotope

Lide Wang, Junyao Zhang, Xiaoyong Lu
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 富集钕-150同位素在核工业、科学研究等领域有着重要应用。基于高效高选择性多步电离路径,原子蒸气激光同位素分离法能够实现钕同位素分离,但现用路径第二步跃迁的同位素位移几乎为零,导致产品中Nd-150丰度偏低。本文基于密度矩阵理论建立了通用的三步电离路径选择性光电离模型,模型中综合考虑了同位素位移、超精细结构等原子参数和频率、功率、线宽、偏振等激光参数,可在磁子能级级别计算原子与激光的相互作用过程。基于上述模型,通过与文献数据对比获得了现用路径分支比的最优拟合值,评估了现用路径在不同线宽下的Nd-150丰度水平;在仅改变第二步跃迁的前提下构造假定电离路径,开展所有钕同位素的电离率计算,评估不同同位素位移、超精细结构下的Nd-150丰度,指导后续原子光谱实验。数值计算发现J3=6,IS23,148 ≥ 300 MHz时,在b12≤ 0.5 GHz,b23 ≤ 1.0 GHz,平行线偏振的典型激光参数下可实现与电磁法相当的Nd-150丰度(>95%)。在此基础上压窄激光线宽,能够在保持电离率的同时获得超过电磁法的Nd-150产品。后续原子光谱实验应着重寻找同位素位移IS23,148≥ 300 MHz、第二激发态角动量J3=6的第二步跃迁,第二步跃迁的约化电偶极矩达到现用路径的30%即可满足丰度要求。
    The enriched neodymium-150 (Nd-150) isotope plays a critical role in nuclear industry and basic scientific research. The Nd isotope separation could be conducted by Atomic Vapor Laser Isotope Separation (AVLIS), where the target isotope is selectively ionized through the λ1 = 596 nm → λ2 = 579 nm → λ3 = 640 nm photoionization scheme, and non-target isotopes remain neutral due to the frequency-detuned excitation; subsequently an external electric field is applied to extract the ions in the laser-produced plasma. The Nd-150 abundance in the product cannot meet the requirement of the application, attributed to the nearly negligible isotope shift of the λ2 = 579 nm transition, which causes the excess ionization of non-target isotopes. A new high-selectivity photoionization scheme is desirable to address this limitation, and its expected parameter values could be determined through numerical calculations prior to the time-consuming atomic spectroscopy experiment. In this study, a three-step selective photoionization model is established based on the density matrix theory, with the consideration of the hyperfine structures and magnetic sublevels. This model allows flexible adjustments of atomic parameters (e.g., branching ratios, isotope shifts, hyperfine constants) and laser parameters (e.g., frequency, power density, bandwidth, polarization), while the ionization probabilities of magnetic sublevel transitions could be quantitatively predicted. For the existing scheme, the branching ratios are determined by the comparison between literature data and numerical results, and the Nd-150 abundances under different laser bandwidths are evaluated. Further, we numerically explore an alternative scheme under the assumption that the first transition remains unchanged and the second transition has a more significant isotope shift and a less branching ratio, and the Nd-150 abundances under different combinations of isotope shifts, hyperfine structures, and laser bandwidths are evaluated with all the natural Nd isotopes included. From the numerical results, a scheme with the angular momentum of the second excited state J3 = 6, the isotope shift between Nd-148 and Nd-150 IS23,148 ≥ 300 MHz, and a lower reduced dipole matrix element of the second transition reaching approximately 30% of that of λ2 = 579 nm, could produce the high-abundance Nd-150 (>95%, equivalent to that of the electromagnetic separation method) under the bandwidth b12 ≤ 0.5 GHz, b23 ≤ 1.0 GHz, and parallel linear-polarized lasers. Higher abundance, superior to the electromagnetic separation method, could be achieved with the narrower-bandwidth lasers. The expected high-abundance Nd-150 could be attributed to the combined effects of multi-factors: the larger isotope shift between Nd-150 and Nd-148 compared with that between other isotope pairs, the unsignificant hyperfine splitting of odd isotopes, as well as the match between narrow-bandwidth lasers and Nd I spectroscopic parameters. These parameter values could serve as helpful benchmarks for experimental parameter selection in the forthcoming high-precision spectroscopy experiments.
  • [1]

    Akhmedzhanov R A, Gushchin L A, Nizov N A, Nizov V A, Sobgayda D A, Zelensky I V 2024 JETP Letters 119 834

    [2]

    Liang P J, Liu X, Li P Y, Zhou Z Q, Li C F, Guo G C 2020 J. Opt. Soc. Am. B 37 1653

    [3]

    Broderick K, Lusk R, Hinderer J, Griswold J, Boll R, Garland M, Heilbronn L, Mirzadeh S 2019 Appl. Radiat. Isot. 144 54

    [4]

    Hu F, Cutler C S, Hoffman T, Sieckman G, Volkert W A, Jurisson S S 2002 Nucl. Med. Biol. 29 423

    [5]

    Committee A 2015Standard Practice for Analysis of Spent Nuclear Fuel to Determine Selected Isotopes and Estimate Fuel Burnup

    [6]

    Suryanarayana M V 2022 Sci. Rep. 12 11471

    [7]

    Barabash A S, Belli P, Bernabei R, Boiko R S, Cappella F, Caracciolo V, Cerulli R, Danevich F A, Fang D L, Ferella F, Incicchitti A, Kobychev V V, Konovalov S I, Laubenstein M, Leoncini A, Merlo V, Nisi S, Niţescu O, Poda D V, Polischuk O G, Shcherbakov I B K, Šimkovic F, Timonina A, Tinkova V S, Tretyak V I, Umatov V I 2025 Eur. Phys. J. C 85 174

    [8]

    https://www.isotopes.gov/products/neodymium

    [9]

    Letokhov V, Ryabov E (Trigg G L ed) 2004Encyclopedia of Applied Physics (New York: Wiley) pp1015-1028

    [10]

    Babichev A P, Grigoriev I S, Grigoriev A I, Dorovskii A P, D'Yachkov A B, Kovalevich S K, Kochetov V A, Kuznetsov V A, Labozin V P, Matrakhov A V, Mironov S M, Nikulin S A, Pesnya A V, Timofeev N I, Firsov V A, Tsvetkov G O, Shatalova G G 2005 Quantum Electron. 35 879

    [11]

    Grigoriev I, Diachkov A, Kovalevich S, Labosin V, Mironov S, Nikulin S, Pesnia A, Firsov V, Shatalova G, Tsvetkov G 2003 Proc. SPIE Int. Soc. Opt. Eng. 5121 406

    [12]

    D'Yachkov A B, Kovalevich S K, Labozin V P, Mironov S M, Panchenko V Y, Firsov V A, Tsvetkov G O, Shatalova G G 2012 Quantum Electron. 42 953

    [13]

    Kramida A, Ralchenko, Yu., Reader, J. and NIST ASD Team 2024NIST Atomic Spectra Database (Gaithersburg, MD: National Institute of Standards and Technology)

    [14]

    Miyabe M, Iwata Y, Tomita H, Morita M, Sakamoto T 2024 Spectrochim. Acta Part B At. Spectrosc. 221 107036

    [15]

    van Leeuwen K A H, Eliel E R, Post B H, Hogervorst W 1981 Z Physik A 301 95

    [16]

    Zyuzikov A D, Mishin V I, Fedoseev V N 1988 Opt. Spectrosc. 64 287

    [17]

    D'Yachkov A B, Gorkunov A A, Labozin A V, Mironov S M, Panchenko V Y, Firsov V A, Tsvetkov G O 2018 Quantum Electron. 48 75

    [18]

    Zhang J Y, Xiong J Y, Wei S Q, Li Y F, Lu X Y 2023 Acta Phys. Sin. 72 193203(in Chinese) [张钧尧, 熊静逸, 魏少强, 李云飞, 卢肖勇2023 72 193203]

    [19]

    Campbell P, Moore I D, Pearson M R 2016 Prog. Part. Nucl. Phys. 86 127

    [20]

    Yang X F, Wang S J, Wilkins S G, Ruiz R F G 2023 Prog. Part. Nucl. Phys. 129 104005

    [21]

    Lu X Y, Wang L D 2023 Chin. Phys. B 32 53204

    [22]

    Lu X Y, Wang L D 2024 Appl. Radiat. Isot. 210 111334

    [23]

    Demtröder W (Demtröder W ed) 2008Laser Spectroscopy: Vol. 1 Basic Principles (Berlin: Springer) pp5-60

    [24]

    Greenland P T 1990 Contemp. Phys. 31 405

    [25]

    Axner O, Gustafsson J, Omenetto N, Winefordner J D 2004 Spectrochim. Acta Part B At. Spectrosc. 59 1

    [26]

    Agarwal G S 1970 Phys. Rev. A 1 1445

    [27]

    Lambropoulos P, Lyras A 1989 Phys. Rev. A 40 2199

    [28]

    Blagoev K B, Komarovskii V A 1994 At. Data Nucl. Data Tables 56 1

    [29]

    Childs W J, Goodman L S 1972 Phys. Rev. A 6 1772

    [30]

    Shen X P, Wang W L, Zhai L H, Deng H, Xu J, Yuan X L, Wei G Y, Wang W, Fang S, Su Y Y, Li Z M 2018 Spectrochim. Acta Part B At. Spectrosc. 145 96

    [31]

    Lu X Y, Wang L D 2025 J. Phys. B: At., Mol. Opt. Phys. 58 025001

    [32]

    Wakasugi M, Horiguchi T, Guo Jin W, Sakata H, Yoshizawa Y 1990 J. Phys. Soc. Jpn. 59 2700

  • [1] 刘鑫, 汶伟强, 李冀光, 魏宝仁, 肖君. 高电荷态类硼离子2P3/22P1/2跃迁的实验和理论研究进展.  , doi: 10.7498/aps.73.20241190
    [2] 钟振祥. 氢分子离子超精细结构理论综述.  , doi: 10.7498/aps.73.20241101
    [3] 计晨. 原子兰姆位移与超精细结构中的核结构效应.  , doi: 10.7498/aps.73.20241063
    [4] 陈润, 邵旭萍, 黄云霞, 杨晓华. BrF分子电磁偶极跃迁转动超精细微波谱模拟.  , doi: 10.7498/aps.72.20221957
    [5] 唐家栋, 刘乾昊, 程存峰, 胡水明. 磁场中HD分子振转跃迁的超精细结构.  , doi: 10.7498/aps.70.20210512
    [6] 张祥, 卢本全, 李冀光, 邹宏新. Hg+离子5d106s 2S1/2→5d96s2 2D5/2钟跃迁同位素位移和超精细结构的理论研究.  , doi: 10.7498/aps.68.20182136
    [7] 余庚华, 颜辉, 高当丽, 赵朋义, 刘鸿, 朱晓玲, 杨维. 相对论多组态相互作用方法计算Mg+离子同位素位移.  , doi: 10.7498/aps.67.20171817
    [8] 裴栋梁, 何军, 王杰英, 王家超, 王军民. 铯原子里德伯态精细结构测量.  , doi: 10.7498/aps.66.193701
    [9] 余庚华, 刘鸿, 赵朋义, 徐炳明, 高当丽, 朱晓玲, 杨维. 采用相对论多组态Dirac-Hartree-Fock方法对Mg原子同位素位移的理论研究.  , doi: 10.7498/aps.66.113101
    [10] 任雅娜, 杨保东, 王杰, 杨光, 王军民. 铯原子7S1/2态磁偶极超精细常数的测量.  , doi: 10.7498/aps.65.073103
    [11] 杨保东, 高静, 王杰, 张天才, 王军民. 铯6S1/2 -6P3/2 -8S1/2阶梯型系统中超精细能级的多重电磁感应透明.  , doi: 10.7498/aps.60.114207
    [12] 陈兴鹏, 王楠. 相对论平均场理论对Rn同位素链原子核基态性质的研究.  , doi: 10.7498/aps.60.112101
    [13] 侯碧辉, 李 勇, 刘国庆, 张桂花, 刘凤艳, 陶世荃. 单晶LiNbO3:Mn2+的ESR谱研究.  , doi: 10.7498/aps.54.373
    [14] 陈岁元, 刘常升, 李慧莉, 崔 彤. 非晶Fe73.5Cu1Nb3Si13.5B9合金激光纳米化的超精细结构研究.  , doi: 10.7498/aps.54.4157
    [15] 王立军, 余慧莺. 窄带激光与能级具有超精细结构的二能级原子的相干激发.  , doi: 10.7498/aps.53.4151
    [16] 马洪良, 陆 江, 王春涛. 141Pr+波长56908 nm谱线超精细结构测量.  , doi: 10.7498/aps.52.566
    [17] 赵鹭明, 王立军. 超精细结构对激光与二能级原子相互作用的影响.  , doi: 10.7498/aps.51.1227
    [18] 马洪良, 汤家镛. 142—146,148,150Nd+同位素位移的共线快离子束激光光谱学实验研究.  , doi: 10.7498/aps.50.453
    [19] 黎光武, 马洪良, 李茂生, 陈志骏, 陈淼华, 陆福全, 彭先觉, 杨福家. LaⅡ5d2 1G4→4f5d 1F3超精 细结构光谱测量.  , doi: 10.7498/aps.49.1256
    [20] 戴长建, 于长江. 脉冲激光场选择性光电离同位素原子.  , doi: 10.7498/aps.43.356
计量
  • 文章访问数:  29
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-04-18

/

返回文章
返回
Baidu
map