-
本文采用基于速率理论的模拟方法研究钨材料中氢同位素氘的热脱附谱. 热脱附数据来源于520 K下受等离子体辐照的多晶钨, 入射离子能量为40 eV, 剂量为1× 1026 D/m2. 通过调节速率理论中的俘获能、俘获率等参数, 最终获得与实验相符合的热脱附拟合谱. 拟合结果表明, 钨中俘获的氘存在于三种俘获态, 俘获能分别为1.14 eV, 1.40 eV和1.70 eV, 相应脱附温度峰值为500 K, 600 K和730 K. 这三个俘获能分别应对应于第一原理计算得到的空位俘获第3–5个氢原子的俘获能(含零点振动能修正)、空位俘获第1–2个氢原子的俘获能, 空位团簇对氢原子的俘获能. 模拟结果表明, 在本辐照实验条件下, 钨中空位及空位团簇是氘在钨中的主要俘获态.Simulation of thermal desorption spectroscopy (TDS) of the hydrogen isotope-deuterium in tungsten has been investigated in this paper based on rate theory. Data are obtained using polycrystalline tungsten, which is under the irradiation of a plasma with an energy of 40 eV and a dose of 1× 1026 D/m2 at 520 K. By adjusting the trapping energy, trapping rate, and other parameters in the rate theory, we can obtain the TDS simulation spectrum, which coincides with the experimental results. It is found that there mainly exist three trapping states for deuterium in tungsten, whose trapping energies are 1.14, 1.40 and 1.70 eV, and the temperature peaks of them is 500, 600 and 730 K, respectively. These three trapping energies correspond to the energy for trapping the 3rd-5th hydrogen by vacancy (the zero point energy correction has been taken into account), the energy for trapping the 1st-2nd hydrogen by vacancy, and the energy for trapping the hydrogen by vacancy cluster, obtained from first-principle calculation, respectively. It is suggested that the vacancy and vacancy cluster are the main trapping objects for deuterium in tungsten, under the experimental condition mentioned above.
-
Keywords:
- hydrogen isotope /
- thermal desorption spectroscopy /
- rate theory
[1] Maier H, Luthin J, Balden M, Linkeb J, Kocha F, Bolt H 2001 Surf. Coat. Technol. 142-144 733
[2] Hao J K 2006 Fusion Materials (Beijing: Chemical Industry Press) pp86-99 (in Chinese) [郝嘉琨 2006 聚变堆材料(北京: 化学工业出版社) 第86–99 页]
[3] Poon M, Haasz A A, Davis J W, Macaulay-Newcombe R G 2003 J. Nucl. Mater. 313 199
[4] Jin X F, Feng Y Q, Zhusng C Q, Wang X 1984 Acta Phys. Sin. 33 754 (in Chinese) [金晓峰, 丰意青, 庄承群, 王迅 1984 33 754]
[5] Xiang X, Chen C A, Liu K Z, Peng L X 2009 Rare Material 33 510 (in Chinese) [向鑫, 陈长安, 刘柯钊, 彭丽霞 2009 稀有金属 33 510]
[6] Zheng Y Z, Qiu Y, Zhang P, Huang Y, Cui Z Y, Sun P, Yang Q W 2009 Chin. Phys. B 18 5406
[7] Li C Y, Allain J P, Deng B Q 2007 Chin. Phys. 16 3312
[8] Lu G H, Zhou H B, Becquart C S 2014 Nucl. Fusion 54 086001
[9] Liu Y L, Zhang Y, Zhou H B, Lu G H, Liu F, Luo G N 2009 Phys. Rev. B 79 172103
[10] Zhou H B, Liu Y L, Jin S, Zhang Y, Luo G N, Lu G H 2010 Nucl. Fusion 50 025016
[11] Sun L, Jin S, Li X C, Zhang Y, Lu G H 2013 J. Nucl. Mater. 434 395
[12] Zhou H B, Jin S, Zhang Y, Lu G H 2012 Phys. Rev. Lett. 109 135502
[13] Sun L, Jin S, Zhou H B, Zhang Y, Zhang W Q, Ueda Y, Lee H T, Lu G H 2014 Phys. J.: Condens. Matter 26 395402
[14] You Y W, Kong X S, Wu X B, Xu Y C, Fang Q F, Chen J L, Luo G N, Liu C S, Pan B C, Wang Z G 2013 AIP Advances 3 012118
[15] Veen A V, Filius H A, Vries J D, Bijkerk K R, Rozing G J, Segers D 1988 Nucl J. Mater. 155-157 1113
[16] Causey R A, Doerner R, Fraser H, Kolasinski R D, Smugeresky J, Umstadter K, Williams R 2009 J. Nucl. Mater. 390-391 717
[17] Shimada M, Hatano Y, Calderon P, Oda T, Oya Y, Sokolov M, Zhang K, Cao G, Kolasinski R, Sharpe J P 2011 J. Nucl. Mater. 415 S667
[18] Sang C F, Bonnin X, Warrier M J, Rai A, Schneider R, Sun J Z, Wang D Z 2012 Nucl. Fusion 52 043003
[19] Ogorodnikova O V, Roth J, Mayer M 2008 J. Appl. Phys. 103 034902
[20] Poon M, Haasz A A, Davis J W 2008 J. Nucl. Mater. 374 390
[21] Causey R A 2002 J. Nucl. Mater 300 91
[22] Li R S, Zhou Y L, Zhang B L, Deng A H, Hou Q 2011 Acta Phys. Sin. 60 046604 (in Chinese) [李仁顺, 周宇璐, 张宝玲, 邓爱红, 侯氢 2011 60 046604]
[23] Tompkins F C 1978 Chemisorption of Gases on Metals (London: Academic Press) pp55-65
[24] Ogorodnikova O V, Roth J, Mayer M 2003 J. Nucl. Mater 313-316 469
[25] Spork C 2013 Ph. D. Dissertation (Utrecht: University of Utrecht)
[26] Tyburska B, Alimov V K, Ogorodnikova O V, Schmid K, Ertl K 2009 J. Nucl. Mater 395 150
[27] Hoen M H J, Tyburska-Pschel B, Ertl K, Mayer M, Rapp J, Kleyn A W, Zeijlmans van Emmichoven P A 2012 Nucl. Fusion 52 023008
[28] Eleveld H 1996 Hydrogen and helium in selected fusion reactor materials (Delft: Technische Universiteit) pp73-80
[29] Sun L, Jin S, Li X C, Zhang Y, Lu G H 2013 J. Nucl. Mater. 434 395
[30] Patankar S V 1980 Numerical Heat Transfer and Fluid Flow (London: Hemisphere Publishing Corporation) pp148-185
-
[1] Maier H, Luthin J, Balden M, Linkeb J, Kocha F, Bolt H 2001 Surf. Coat. Technol. 142-144 733
[2] Hao J K 2006 Fusion Materials (Beijing: Chemical Industry Press) pp86-99 (in Chinese) [郝嘉琨 2006 聚变堆材料(北京: 化学工业出版社) 第86–99 页]
[3] Poon M, Haasz A A, Davis J W, Macaulay-Newcombe R G 2003 J. Nucl. Mater. 313 199
[4] Jin X F, Feng Y Q, Zhusng C Q, Wang X 1984 Acta Phys. Sin. 33 754 (in Chinese) [金晓峰, 丰意青, 庄承群, 王迅 1984 33 754]
[5] Xiang X, Chen C A, Liu K Z, Peng L X 2009 Rare Material 33 510 (in Chinese) [向鑫, 陈长安, 刘柯钊, 彭丽霞 2009 稀有金属 33 510]
[6] Zheng Y Z, Qiu Y, Zhang P, Huang Y, Cui Z Y, Sun P, Yang Q W 2009 Chin. Phys. B 18 5406
[7] Li C Y, Allain J P, Deng B Q 2007 Chin. Phys. 16 3312
[8] Lu G H, Zhou H B, Becquart C S 2014 Nucl. Fusion 54 086001
[9] Liu Y L, Zhang Y, Zhou H B, Lu G H, Liu F, Luo G N 2009 Phys. Rev. B 79 172103
[10] Zhou H B, Liu Y L, Jin S, Zhang Y, Luo G N, Lu G H 2010 Nucl. Fusion 50 025016
[11] Sun L, Jin S, Li X C, Zhang Y, Lu G H 2013 J. Nucl. Mater. 434 395
[12] Zhou H B, Jin S, Zhang Y, Lu G H 2012 Phys. Rev. Lett. 109 135502
[13] Sun L, Jin S, Zhou H B, Zhang Y, Zhang W Q, Ueda Y, Lee H T, Lu G H 2014 Phys. J.: Condens. Matter 26 395402
[14] You Y W, Kong X S, Wu X B, Xu Y C, Fang Q F, Chen J L, Luo G N, Liu C S, Pan B C, Wang Z G 2013 AIP Advances 3 012118
[15] Veen A V, Filius H A, Vries J D, Bijkerk K R, Rozing G J, Segers D 1988 Nucl J. Mater. 155-157 1113
[16] Causey R A, Doerner R, Fraser H, Kolasinski R D, Smugeresky J, Umstadter K, Williams R 2009 J. Nucl. Mater. 390-391 717
[17] Shimada M, Hatano Y, Calderon P, Oda T, Oya Y, Sokolov M, Zhang K, Cao G, Kolasinski R, Sharpe J P 2011 J. Nucl. Mater. 415 S667
[18] Sang C F, Bonnin X, Warrier M J, Rai A, Schneider R, Sun J Z, Wang D Z 2012 Nucl. Fusion 52 043003
[19] Ogorodnikova O V, Roth J, Mayer M 2008 J. Appl. Phys. 103 034902
[20] Poon M, Haasz A A, Davis J W 2008 J. Nucl. Mater. 374 390
[21] Causey R A 2002 J. Nucl. Mater 300 91
[22] Li R S, Zhou Y L, Zhang B L, Deng A H, Hou Q 2011 Acta Phys. Sin. 60 046604 (in Chinese) [李仁顺, 周宇璐, 张宝玲, 邓爱红, 侯氢 2011 60 046604]
[23] Tompkins F C 1978 Chemisorption of Gases on Metals (London: Academic Press) pp55-65
[24] Ogorodnikova O V, Roth J, Mayer M 2003 J. Nucl. Mater 313-316 469
[25] Spork C 2013 Ph. D. Dissertation (Utrecht: University of Utrecht)
[26] Tyburska B, Alimov V K, Ogorodnikova O V, Schmid K, Ertl K 2009 J. Nucl. Mater 395 150
[27] Hoen M H J, Tyburska-Pschel B, Ertl K, Mayer M, Rapp J, Kleyn A W, Zeijlmans van Emmichoven P A 2012 Nucl. Fusion 52 023008
[28] Eleveld H 1996 Hydrogen and helium in selected fusion reactor materials (Delft: Technische Universiteit) pp73-80
[29] Sun L, Jin S, Li X C, Zhang Y, Lu G H 2013 J. Nucl. Mater. 434 395
[30] Patankar S V 1980 Numerical Heat Transfer and Fluid Flow (London: Hemisphere Publishing Corporation) pp148-185
计量
- 文章访问数: 6663
- PDF下载量: 387
- 被引次数: 0