搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

EAST上RMP驱动等离子体自发旋转物理机制的实验研究

金仡飞 张洪明 尹相辉 吕波 Cheonho Bae 叶凯萱 盛回 王士凡 赵海林 顾帅 袁泓 林子超 傅盛宇 卢迪安 符佳 王福地

引用本文:
Citation:

EAST上RMP驱动等离子体自发旋转物理机制的实验研究

金仡飞, 张洪明, 尹相辉, 吕波, Cheonho Bae, 叶凯萱, 盛回, 王士凡, 赵海林, 顾帅, 袁泓, 林子超, 傅盛宇, 卢迪安, 符佳, 王福地

Experimental investigations on mechanisms of RMP-induced intrinsic rotations at EAST

Jin YiFei, Zhang HongMing, Yin XiangHui, Lyu Bo, Cheonho Bae, Ye KaiXuan, Sheng Hui, Wang ShiFan, Zhao HaiLin, GU Shuai, Yuan Hong, Lin ZiChao, Fu ShengYu, Lu DiAn, Fu Jia, Wang FuDi
PDF
导出引用
  • 等离子体自发旋转对托卡马克装置的约束性能和稳定性十分重要。能否有效地诱导等离子体自发旋转来致稳电阻壁模对国际热核聚变实验堆(International Thermonuclear Experimental Reactor,ITER)的稳定运行尤为关键。在韩国先进超导托卡马克(Korea Superconducting TokamakAavanced Research,KSTAR)装置上首次实验证明了在特定参数下,共振磁扰动(Resonant Magnetic Perturbation,RMP)产生的新经典环向粘滞(Neoclassical Torodial Viscosity,NTV)力矩能够驱动等离子体旋转。在东方超环托卡马克(Experimental Advanced Superconducting Tokamak,EAST)的RMP实验中同样也观测到了RMP加入后等离子体旋转在同电流方向增加的实验现象,与KSTAR不同,EAST上模拟计算的NTV力矩比实验测得RMP产生的力矩小2个量级,说明存在NTV以外的机制驱动等离子体旋转。在EAST的实验中,旋转速度增大的同时也伴随有 E × B 速度的明显变化,并且与实验测量得到的RMP产生的力矩分布一致,表明 E × B 剪切的变化产生的残余应力可能是导致RMP加入后旋转速度增大的原因。实验的统计结果也表明,RMP对环向旋转的驱动效果与湍流强度有关,进一步验证了RMP加入 E × B 剪切产生的残余应力是驱动环向旋转变化的主要机制。
    Plasma spontaneous rotation significantly influences confinement performance and stability in tokamaks. Effectively inducing this rotation is essential for stabilizing resistive wall modes (RWMs) and ensuring the stable operation of the International Thermonuclear Experimental Reactor (ITER). Recent experiments on the Korea Superconducting Tokamak Advanced Research (KSTAR) device demonstrated that resonant magnetic perturbations (RMPs) can induce neoclassical toroidal viscosity (NTV) torque under certain conditions, successfully driving plasma rotation. Similarly, an increase in plasma rotation in the direction of the plasma current following RMP application has been observed on the Experimental Advanced Superconducting Tokamak (EAST). However, unlike the KSTAR findings, NTV torque simulations for EAST are two orders of magnitude lower than experimental measurements, suggesting additional mechanisms beyond NTV may be driving the observed plasma rotations. To investigate these mechanisms, momentum balance, causality, and statistical analyses have been performed at EAST. An increase in rotation velocity has been found to correlate with significant changes in the E × B flow, matching the RMP-induced torque distribution. This alignment suggests that residual stress, arising from variations in E × B shear, may drive the observed rotation increases. The effects of stochastic fields on multi-scale turbulence are proposed as a possible explanation for correlations between E × B velocity and toroidal rotation. Stochastic fields appear to enhance the inertia of large-scale turbulence while driving small-scale turbulence to maintain quasi-neutrality. The resulting turbulent Reynolds stress, generated by small-scale turbulence, may account for the observed E × B velocity increases during RMP application. Statistical analysis further highlights the importance of island width in understanding the threshold RMP current in ramping-up RMP experiments, supporting the conclusion that turbulence-driven E × B shear-related residual stress is the key mechanism driving plasma rotation following RMP application.
  • [1]

    Garofalo A M, Strait E J, Johnson L C, La Haye R J, Lazarus E A, Navratil G A, Okabayashi M, Scoville J T, Taylor T S, Turnbull A D 2002 Phys. Rev. Lett. 89235001

    [2]

    Chapman I T, Liu Y Q, Asunta O, Graves J P, Johnson T, Jucker M 2012 Phys. Plasmas 19052502

    [3]

    Peeters A, Angioni C, Bortolon A, Camenen Y, Casson F, Duval B, Fiederspiel L, Hornsby W, Idomura Y, Hein T, Kluy N, Mantica P, Parra F, Snodin A, Szepesi G, Strintzi D, Tala T, Tardini G, De Vries P, Weiland J 2011 Nucl. Fusion 51094027

    [4]

    Diamond P, Kosuga Y, Gürcan ff, McDevitt C, Hahm T, Fedorczak N, Rice J, Wang W, Ku S, Kwon J, Dif-Pradalier G, Abiteboul J, Wang L, Ko W, Shi Y, Ida K, Solomon W, Jhang H, Kim S, Yi S, Ko S, Sarazin Y, Singh R, Chang C 2013 Nucl. Fusion 53104019

    [5]

    Ida K, Rice J 2014 Nucl. Fusion 54045001

    [6]

    Rice J E 2016 Plasma Phys. Control. Fusion 58083001

    [7]

    Stoltzfus-Dueck T 2019 Plasma Phys. Control. Fusion 61124003

    [8]

    Taylor G I, Shaw W N 1915 Phil. Trans. R. Soc. A 2151

    [9]

    Diamond P H, Itoh S I, Itoh K, Hahm T S 2005 Plasma Phys. Control. Fusion 47 R35

    [10]

    Gürcan ff D, Diamond P H, Hahm T S, Singh R 2007 Phys. Plasmas 14042306

    [11]

    Diamond P H, McDevitt C J, Gürcan ff D, Hahm T S, Naulin V 2008 Phys. Plasmas 15012303

    [12]

    Gürcan ff D, Diamond P H, Hennequin P, McDevitt C J, Garbet X, Bourdelle C 2010 Phys. Plasmas 17112309

    [13]

    Kosuga Y, Diamond P H, Gürcan ff D 2010 Phys. Plasmas 17102313

    [14]

    Fedorczak N, Diamond P, Tynan G, Manz P 2012 Nucl. Fusion 52103013

    [15]

    Wang L, Diamond P H 2013 Phys. Rev. Lett. 110265006

    [16]

    Evans T, Fenstermacher M, Moyer R, Osborne T, Watkins J, Gohil P, Joseph I, Schaffer M, Baylor L, Bécoulet M, Boedo J, Burrell K, deGrassie J, Finken K, Jernigan T, Jakubowski M, Lasnier C, Lehnen M, Leonard A, Lonnroth J, Nardon E, Parail V, Schmitz O, Unterberg B, West W 2008 Nucl. Fusion 48024002

    [17]

    Sun Y, Liang Y, Liu Y, Gu S, Yang X, Guo W, Shi T, Jia M, Wang L, Lyu B, Zhou C, Liu A, Zang Q, Liu H, Chu N, Wang H, Zhang T, Qian J, Xu L, He K, Chen D, Shen B, Gong X, Ji X, Wang S, Qi M, Song Y, Yuan Q, Sheng Z, Gao G, Fu P, Wan B 2016 Phys. Rev. Lett. 117115001

    [18]

    Li C Y, Hao G Z, Liu Y Q, Wang L, Liu Y H Z 2022 Acta Phys. Sin. 71075202(in Chinese) [李春雨, 郝广周, 刘钺强, 王炼, 刘艺慧子2022 71075202]

    [19]

    Xiong J Y, Jiang Z H, Jiao Z X, Li Z, Liang Y F, Chen Z Y, Ding Y H, Team J T 2023 Chinese Phys. B 32075210

    [20]

    Pan S S, Duan Y M, Xu L Q, Chao Y, Zhong G Q, Sun Y W, Sheng H, Liu H Q, Chu Y Q, Lyu B, Jin Y F, Hu L Q 2023 Acta Phys. Sin. 72135203(in Chinese) [潘姗姗, 段艳敏, 徐立清, 晁燕, 钟国强, 孙有文, 盛回, 刘海庆, 储宇奇, 吕波, 金仡飞, 胡立群2023 72135203]

    [21]

    Solomon W, Burrell K, Garofalo A, Cole A, Budny R, deGrassie J, Heidbrink W, Jackson G, Lanctot M, Nazikian R, Reimerdes H, Strait E, Van Zeeland M 2009 Nucl. Fusion 49085005

    [22]

    Sun Y, Liang Y, Koslowski H R, Jachmich S, Alfier A, Asunta O, Corrigan G, Giroud C, Gryaznevich M P, Harting D, Hender T, Nardon E, Naulin V, Parail V, Tala T, Wiegmann C, Wiesen S, JETEFDA contributors 2010 Plasma Phys. Control. Fusion 52105007

    [23]

    Callen J 2011 Nucl. Fusion 51094026

    [24]

    Sun Y, Liang Y, Shaing K, Liu Y, Koslowski H, Jachmich S, Alper B, Alfier A, Asunta O, Buratti P, Corrigan G, Delabie E, Giroud C, Gryaznevich M, Harting D, Hender T, Nardon E, Naulin V, Parail V, Tala T, Wiegmann C, Wiesen S, Zhang T 2012 Nucl. Fusion 52083007

    [25]

    Yan W, Chen Z Y, Huang D W, Hu Q M, Shi Y J, Ding Y H, Cheng Z F, Yang Z J, Pan X M, Lee S G, Tong R H, Wei Y N, Dong Y B, Team J T 2018 Plasma Phys. Control. Fusion 60035007

    [26]

    Jiang M, Xu Y, Zhong W, Li D, Huang Z, Yang Z, Shi Z, Wang N, Cheng Z, Yang Z, Liang A, Shi P, Wen J, Chen Z, Chen Z, Pan X, Shi P, Ruan B, Guo D, Cai Q, Hu Q, Wang S, Ding Y, Ji X, Li Y, Liu Y, Xu M 2019 Nucl. Fusion 59046003

    [27]

    Chen X Y, Mou M L, Su C Y, Chen S Y, Tang C J 2020 Acta Phys. Sin. 69195201(in Chinese) [陈撷宇, 牟茂淋, 苏春燕, 陈少永, 唐昌建2020 69195201]

    [28]

    Li J, Lin Z, Cheng J, Wu Z X, Xu J, He Y, Huang Z H, Liang A S, Sun T F, Dong J Q, Shi Z B, Zhong W, Xu M, Team H A 2024 Phys. Plasmas 31042502

    [29]

    Waltz R E, Ferraro N M 2015 Phys. Plasmas 22042507

    [30]

    Sugama H, Watanabe T H 2006 Phys. Plasmas 13012501

    [31]

    Leconte M, Diamond P H 2012 Phys. Plasmas 19055903

    [32]

    Terry P W, Pueschel M J, Carmody D, Nevins W M 2013 Phys. Plasmas 20112502

    [33]

    Leconte M, Diamond P, Xu Y 2014 Nucl. Fusion 54013004

    [34]

    Choi G, Hahm T 2018 Nucl. Fusion 58026001

    [35]

    Williams Z, Pueschel M, Terry P, Nishizawa T, Kriete D, Nornberg M, Sarff J, McKee G, Orlov D, Nogami S 2020 Nucl. Fusion 60096004

    [36]

    Xu Y, Carralero D, Hidalgo C, Jachmich S, Manz P, Martines E, Van Milligen B, Pedrosa M, Ramisch M, Shesterikov I, Silva C, Spolaore M, Stroth U, Vianello N 2011 Nucl. Fusion 51063020

    [37]

    Basu D, Nakajima M, Melnikov A, McColl D, Rohollahi A, Elgriw S, Xiao C, Hirose A 2018 Nucl. Fusion 58024001

    [38]

    Zhao K, Shi Y, Hahn S, Diamond P, Sun Y, Cheng J, Liu H, Lie N, Chen Z, Ding Y, Chen Z, Rao B, Leconte M, Bak J, Cheng Z, Gao L, Zhang X, Yang Z, Wang N, Wang L, Jin W, Yan L, Dong J, Zhuang G 2015 Nucl. Fusion 55073022

    [39]

    Zhao K, Shi Y, Liu H, Diamond P, Li F, Cheng J, Chen Z, Nie L, Ding Y, Wu Y, Chen Z, Rao B, Cheng Z, Gao L, Zhang X, Yang Z, Wang N, Wang L, Jin W, Xu J, Yan L, Dong J, Zhuang G, team J T 2016 Nucl. Fusion 56076005

    [40]

    Zhao K, Chen Z, Shi Y, Diamond P, Dong J, Chen Z, Ding Y, Zhuang G, Liu Y, Zhang H, Chen Y, Liu H, Cheng J, Nie L, Rao B, Cheng Z, Gao L, Zhang X, Yang Z, Wang N, Wang L, Li J, Jin W, Xu J, Yan L, Liang Y, Xie Y, Liu B 2020 Nucl. Fusion 60106030

    [41]

    Garofalo A M, Burrell K H, DeBoo J C, deGrassie J S, Jackson G L, Lanctot M, Reimerdes H, Schaffer M J, Solomon W M, Strait E J 2008 Phys. Rev. Lett. 101195005

    [42]

    Callen J D, Cole A J, Hegna C C 2009 Phys. Plasmas 16082504

    [43]

    Sun Y, Liang Y, Shaing K C, Koslowski H R, Wiegmann C, Zhang T 2010 Phys. Rev. Lett. 105145002

    [44]

    Sun Y, Liang Y, Shaing K, Koslowski H, Wiegmann C, Zhang T 2011 Nucl. Fusion 51053015

    [45]

    Sun Y, Shaing K, Liang Y, Casper T, Loarte A, Shen B, Wan B 2013 Nucl. Fusion 53093010

    [46]

    Shaing K, Ida K, Sabbagh S 2015 Nucl. Fusion 55125001

    [47]

    Li H, Sun Y, Wang L, He K, Shaing K C 2021 Nucl. Fusion 61104002

    [48]

    Yang S, Park J K, Na Y S, Wang Z, Ko W, In Y, Lee J, Lee K, Kim S 2019 Phys. Rev. Lett. 123095001

    [49]

    Sheng H, Lyu B, Sun Y W, Li H H, Li Y Y, Bae C, Liu Y Q, Jin Y F, Mao S F, Yan X T, Xie P C, Ma Q, Wang H H, Shi T H, Zang Q, Qian J P, Jia M N, Chu N, Ye C, Chang Y Y, Wu X M, Zhang Y N, Yang H, Wu M F, Ye M Y, EAST Team 2024 Phys. Plasmas 31032507

    [50]

    Wan B, Gong X, Liang Y, Xiang N, Xu G, Sun Y, Wang L, Qian J, Liu H, Zhang B, Xia T, Huang J, Ding R, Zhang T, Zuo G, Sun Z, Zeng L, Zhang X, Zang Q, Lyu B, Garofalo A, Li G, Li K, Yang Q, For The East Team And Collaborators 2022 Nucl. Fusion 62042010

    [51]

    Li Y Y, Fu J, Lyu B, Du X W, Li C Y, Zhang Y, Yin X H, Yu Y, Wang Q P, Von Hellermann M, Shi Y J, Ye M Y, Wan B N 2014 Rev. Sci. Instrum. 8511E428

    [52]

    Fu S, Yin X, Fu J, Li Y, Wang F, Zhang H, Bae C, Lyu B, Huang Q, Shen Y, Li Y, He L, Jin Y, Gong X 2022 Rev. Sci. Instrum. 93043504

    [53]

    Li G, Wei X, Liu H, Shen J, Jie Y, Lian H, Zeng L, Zou Z, Zhang J, Wang S 2017 Plasma Sci. Technol. 19084003

    [54]

    Wang Y, Zhang T, Liu X, Zhao C, Qu H, Li G, Wu M, Ye K, Wen F, Xiang H, Geng K, Zhong F, Huang J, Han X, Zhang S, Liu S, Nan J, Gao X 2019 Fusion Eng. Des. 148111286

    [55]

    Zhao H, Zhou T, Liu Y, Ti A, Ling B, Austin M E, Houshmandyar S, Huang H, Rowan W L, Hu L 2018 Rev. Sci. Instrum. 8910H111

    [56]

    Wu M, Wen F, Xiang H, Zhang T, Mao G, Liu Z, Wang Y, Li G, Liu Y, Geng K, Zhong F, Ye K, Huang J, Zhou Z, Han X, Zhang S, Zhuang G, Gao X 2020 JINST 15 P12009

    [57]

    Zhou C, Liu A D, Zhang X H, Hu J Q, Wang M Y, Li H, Lan T, Xie J L, Sun X, Ding W X, Liu W D, Yu C X 2013 Rev. Sci. Instrum. 84103511

    [58]

    Goldston R J 1981 J. Comput. Phys. 4361

    [59]

    Pankin A, McCune D, Andre R, Bateman G, Kritz A 2004 Comput. Phys. Commun. 159157

    [60]

    McDermott R M, Angioni C, Dux R, Fable E, Pütterich T, Ryter F, Salmi A, Tala T, Tardini G, Viezzer E, the ASDEX Upgrade Team 2011 Plasma Phys. Control. Fusion 53124013

    [61]

    Zhang X H, Liu A D, Zhou C, Hu J Q, Wang M Y, Yu C X, Liu W D, Li H, Lan T, Xie J L 2015 Chinese Phys. Lett. 32125201

    [62]

    Conway G D, Schirmer J, Klenge S, Suttrop W, Holzhauer E, the ASDEX Upgrade Team 2004 Plasma Phys. Control. Fusion 46951

    [63]

    Lao L, John H S, Stambaugh R, Pfeiffer W 1985 Nucl. Fusion 251421

    [64]

    Miller R L, Chu M S, Greene J M, Lin-Liu Y R, Waltz R E 1998 Phys. Plasmas 5973

    [65]

    Ye C, Sun Y W, Wang H H, Liu Y Q, Shi T H, Zang Q, Jia T Q, Ma Q, Gu S, Chu N, He K Y, Jia M N, Wu X M, Xie P C, Sheng H, Yang H, Huang L S, Shen B, Li M H, Qian J P, the EAST Team 2023 Nucl. Fusion 63076004

    [66]

    Cao M, Diamond P H 2022 Plasma Phys. Control. Fusion 64035016

  • [1] 张启凡, 乐文成, 张羽昊, 葛忠昕, 邝志强, 萧声扬, 王璐. 钨杂质辐射对托卡马克等离子体大破裂快速热猝灭阶段热能损失过程的影响.  , doi: 10.7498/aps.73.20240730
    [2] 刘冠男, 李新霞, 刘洪波, 孙爱萍. HL-2M托卡马克装置中螺旋波与低杂波的协同电流驱动.  , doi: 10.7498/aps.72.20231077
    [3] 沈勇, 董家齐, 何宏达, 潘卫, 郝广周. 托卡马克理想导体壁与磁流体不稳定性.  , doi: 10.7498/aps.72.20222043
    [4] 周利娜, 胡汉卿, 刘钺强, 段萍, 陈龙, 张瀚予. 等离子体对共振磁扰动的流体和动理学响应的模拟研究.  , doi: 10.7498/aps.72.20222196
    [5] 朱霄龙, 陈伟, 王丰, 王正汹. 托卡马克中低频磁流体不稳定性协同作用引起快粒子输运的混合模拟研究.  , doi: 10.7498/aps.72.20230620
    [6] 王福琼, 徐颖峰, 查学军, 钟方川. 托卡马克边界等离子体中钨杂质输运的多流体及动力学模拟.  , doi: 10.7498/aps.72.20230991
    [7] 潘姗姗, 段艳敏, 徐立清, 晁燕, 钟国强, 孙有文, 盛回, 刘海庆, 储宇奇, 吕波, 金仡飞, 胡立群. EAST托卡马克上共振磁扰动对锯齿行为的影响.  , doi: 10.7498/aps.72.20230347
    [8] 李春雨, 郝广周, 刘钺强, 王炼, 刘艺慧子. 托卡马克装置中等离子体环向旋转对三维响应场的影响.  , doi: 10.7498/aps.71.20211975
    [9] 刘朝阳, 章扬忠, 谢涛, 刘阿娣, 周楚. 托卡马克无碰撞捕获电子模在时空表象中的群速度.  , doi: 10.7498/aps.70.20202003
    [10] 苏春燕, 牟茂淋, 陈少永, 郭文平, 唐昌建. 托卡马克等离子体中共振磁扰动场放大效应对离子轨道特性的作用.  , doi: 10.7498/aps.70.20201860
    [11] 陈撷宇, 牟茂淋, 苏春燕, 陈少永, 唐昌建. HL-2A中环向旋转影响等离子体对共振磁扰动的响应过程.  , doi: 10.7498/aps.69.20200519
    [12] 张重阳, 刘阿娣, 李弘, 陈志鹏, 李斌, 杨州军, 周楚, 谢锦林, 兰涛, 刘万东, 庄革, 俞昌旋. 双极化频率调制微波反射计在J-TEXT托卡马克上的应用.  , doi: 10.7498/aps.63.125204
    [13] 杜海龙, 桑超峰, 王亮, 孙继忠, 刘少承, 汪惠乾, 张凌, 郭后扬, 王德真. 东方超环托卡马克高约束模式边界等离子体输运数值模拟研究.  , doi: 10.7498/aps.62.245206
    [14] 卢洪伟, 查学军, 胡立群, 林士耀, 周瑞杰, 罗家融, 钟方川. HT-7托卡马克slide-away放电充气对等离子体行为的影响.  , doi: 10.7498/aps.61.075202
    [15] 洪斌斌, 陈少永, 唐昌建, 张新军, 胡有俊. 托卡马克中电子回旋波与低杂波协同驱动的物理研究.  , doi: 10.7498/aps.61.115207
    [16] 卢洪伟, 胡立群, 林士耀, 钟国强, 周瑞杰, 张继宗. HT-7托卡马克等离子体slide-away放电研究.  , doi: 10.7498/aps.59.5596
    [17] 徐强, 高翔, 单家方, 胡立群, 赵君煜. HT-7托卡马克大功率低混杂波电流驱动的实验研究.  , doi: 10.7498/aps.58.8448
    [18] 龚学余, 彭晓炜, 谢安平, 刘文艳. 托卡马克等离子体不同运行模式下的电子回旋波电流驱动.  , doi: 10.7498/aps.55.1307
    [19] 徐 伟, 万宝年, 谢纪康. HT-6M托卡马克装置杂质输运.  , doi: 10.7498/aps.52.1970
    [20] 王文浩, 许宇鸿, 俞昌旋, 闻一之, 凌必利, 宋梅, 万宝年. HT-7超导托卡马克边缘涨落谱特征及湍流输运研究.  , doi: 10.7498/aps.50.1956
计量
  • 文章访问数:  98
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 上网日期:  2024-11-12

/

返回文章
返回
Baidu
map