-
低维电子材料与超导材料的复合体系一直是研究介观输运和低维超导特性的重要平台, 其中具有强自旋轨道耦合效应的低维结构与超导宏观量子态结合呈现出丰富的量子现象, 为探索新物性和研制新型拓扑量子器件提供了一个理想的平台. 采用高质量的一维电子材料构筑超导复合器件, 探索受限量子体系与超导界面的量子输运现象和器件调控机制迅速成为研究的前沿和热点. 其中的关键问题在于理解纳米尺度下低维体系与超导界面的特征散射机制和量子输运过程, 研究电荷态与拓扑局域态的耦合机制, 实现对拓扑态本征输运特性的探测, 在此基础上为研制新型超导纳电子器件和拓扑量子器件探索新原理和新方法. 由于多种能量尺度和束缚态的竞争, 介观尺度下的超导复合结构在器件物理、结构设计以及测量方案上都存在前所未有的挑战. 本文回顾了基于一维电子体系的超导复合器件的近期进展, 聚焦在以半导体纳米线和碳纳米管为代表的实验体系, 简要介绍了从材料和器件物理, 到输运测量的主要现象和实验挑战. 最后本文对一维体系拓扑量子器件的研制和输运研究进行了总结和展望.The hybrid system of low-dimensional electronic and superconducting materials has been an attractive structure for studying mesoscopic transport and low-dimensional superconducting properties. Low-dimensional structures with strong spin-orbit coupling exhibit rich quantum phenomena combined with superconducting macroscopic quantum states, becoming an important platform for exploring novel physical properties and developing new topological quantum devices. The construction of hybrid superconducting devices based on high-quality one-dimensional electronic materials, and the exploration of quantum transport phenomena at the interface emerge as research frontier. It is crucial to understand the characteristic scattering mechanism and quantum transport process in these hybrid systems at the nanoscale. The study of the coupling mechanism between the charge state and the topological localized state, and the experimental probe of the intrinsic transport properties of the topological states are the key issues, which enable the development of the new principles and methods for novel superconducting nanoelectronic devices and topological quantum devices. Due to the competition of multiple energy scales and complicated bound states in these hybrid structures, the device physics and measurement schemes present unprecedented challenges. This paper reviews recent advances in hybrid superconducting devices based on one-dimensional electronic systems, focusing on the material systems based on semiconducting nanowires and carbon nanotubes. Semiconducting nanowires with strong spin-orbit coupling and large Landau $g$-factor are expected to support Majorana bound states and require further improvements in the material quality, interface between superconductors and nanowires, understanding of the transport mechanism, and detection scheme. The construction strategies of extending topological phase space, including broken symmetry, helical modes, semiconducting characteristics, and attenuation of the external magnetic field, are proposed and discussed in hybrid superconducting devices based on carbon nanotubes. We briefly introduce the main phenomena and experimental challenges, ranging from material and device physics. Finally, this paper summarizes and gives an outlook on the development and transport studies of topological quantum devices based on one-dimensional systems.
-
Keywords:
- One-dimensional electronics /
- Quantum transport /
- Topological device /
- Hybrid superconducting device
-
图 1 半导体纳米线与超导材料复合构筑拓扑量子器件. (a) 具有强自旋轨道耦合的一维体系在磁场下的色散关系. 体系中强自旋轨道耦合效应的存在使能带在k空间发生劈裂, 对应每个动量k都有确定的自旋方向[28]; (b) 复合体系中随化学势和磁场演化的电子相图. 在临界磁场之上, 磁场驱动体系发生拓扑超导相的相变[31]
Fig. 1. Topological devices based on the hybrid superconductor-semiconductor nanowire structures. (a) Electronic dispersion of an one-dimensional quantum wire with strong spin-orbit coupling under applied magnetic field[28]. The presence of spin-orbit coupling results in the lifting of spin degeneracy. (b) The phase diagram for a proximitized semiconducting nanowire device as a function of the magnetic field and chemical potential. The interplay of spin–orbit coupling, Zeeman fields can drive a quantum phase transition into a topological superconductivity[31].
图 2 构筑基于纳米线的量子点和超导干涉器件 (a) 基于单根InSb纳米线的器件SEM照片; (b) 纳米线复合器件中的Andreev束缚态能谱. (c)实现了复合器件中不同基态的栅极调控, 观察到0相与π相交替出现的安德烈夫束缚态[11]
Fig. 2. The realization of the nanowire quantum dot-superconducting quantum interference device. (a)SEM image of a typical device, showing that individual InSb nanowire is in contact with superconducting electrodes. (b)Differential conductance $dI/dV$ map for the odd charge state as function of voltage bias $V_{sd}$ and backgate voltage $V_{g}$, indicating an Andreev bound state formed. (c)Differential conductance $dI/dV$ plot as a function of $V_{sd}$ and $V_{g}$ at 10 mK and zero magnetic field, demonstrating a realization of continuous gate-tunable Andreev bound states with both 0-type levels and π-type levels[11].
图 3 拓扑态的固态量子器件构筑和探测. (a) 基于强自旋轨道耦合的二维电子气构筑超导界面和量子点接触的复合结构器件, 在磁场驱动下在拓扑相区域, 电导出现半整数的量子化平台[71]; (b) 三端非局域测量方案的器件构型, 用于区分安德烈夫和马约拉纳束缚态[72]; (c) 基于半导体纳米线与超导电极构筑耦合量子点的Kitaev链器件结构[81]. 实验通过栅极实现对交叉安德烈夫反射和弹性共隧穿过程的精确调控[80]
Fig. 3. The realization and detection of the one-dimensional topological states in hybrid semiconductor–superconductor structures. (a) The conductance of a quantum point contact placed between superconductor and semiconducting wire with spin–orbit coupling[71]. (b) Three-terminal setup for probing Andreev and Majorana bound states with nonlocal measurement of conductance[72]. (c) Top panel: false color SEM microscopy of a fabricated nanowire device showing the realization of the Kitaev chain with coupled quantum dots through superconductor[81]. Illustration of the realization of the Kitaev chain with coupled quantum dots through superconductor, in which the coupling strength of crossed Andreev reflection and elastic co-tunnelling can be gate-tunable[80].
图 4 单壁碳纳米管的能带结构与可调控性. (a) 碳纳米管卷曲矢量决定的金属型和半导体型碳纳米管能带结构[82]; (b) 基于碳纳米管的分离静电栅构筑的原位可控$PN$结结构; (c) 碳纳米管中随内建电场增加而逐渐降低的磁导拐点, 表明电场和磁场对碳纳米管能带结构的控制; 插图: 非单调磁导的温度依赖特性, 验证了磁导响应的机制[87]
Fig. 4. Tunability of electronic band structure in single-wall carbon nanotubes. (a) Band structures of metallic and semiconducting carbon nanotubes determined by the chiral vector[82]. (b) In situ controllable $PN$ junction structure based on split gates of carbon nanotubes. (c) The magnetoconductance peaks move towards lower magnetic fields with increasing built-in electric fields in a carbon nanotube, demonstrating the control of the band structure of carbon nanotubes by electric and magnetic fields; Inset: temperature dependence of nonmonotonic magnetoconductance, suggesting the mechanism of the magnetic response[87].
图 5 半导体型碳纳米管-超导薄膜异质结的拓扑态构建方案. (a) 半导体型碳纳米管-超导体异质结器件示意图, 在面内横向磁场下诱导出马约拉纳束缚态; (b) 马约拉纳束缚态能谱和局域波函数在磁场下的演化, 表明碳纳米管两端处磁场诱导的马约拉纳束缚态[110]
Fig. 5. Topological state scheme based on semiconducting carbon nanotubes-superconducting films heterojunction. (a) Schematic diagram of a semiconducting carbon nanotube-superconductor heterojunction device, where Majorana bound states can be induced by in-plane transverse magnetic field. (b) Majorana bound states spectrum and wave function as a function of magnetic field, demonstrating the Majorana bound states in the ends of carbon nanotube induced by magnetic field[110].
图 6 碳纳米管- TMD超导体异质结的拓扑态构建方案. (a) 碳纳米管- TMD超导体异质结器件示意图, 在轴向磁场和横向电场下诱导出马约拉纳束缚态; (b) 自旋轨道耦合、磁通效应、横向电场和伊辛近邻效应导致的半金属态碳纳米管; (c) 磁通和化学势的拓扑相图, –1表示拓扑相; (d) 电子-电子相互作用诱导的无磁场拓扑相图[119]; (e) 碳纳米管-薄层NbSe2近邻下的超导电流和相滑移[105]
Fig. 6. Topological state scheme based on semiconducting carbon nanotubes-TMD superconductors heterojunction. (a) Schematic diagram of a carbon nanotube-TMD superconductor heterojunction device, where Majorana bound states can be arised by axial magnetic field and transverse electric field. (b) Semi-metallic carbon nanotubes induced by spin-orbit coupling, magnetic flux effect, transverse electric field and Ising proximity effect. (c) Topological phase diagram of magnetic flux and chemical potential, where –1 denotes topological phase. (d) Topological phase diagram induced by electron-electron interaction without magnetic field[119]. (e) Supercurrent and phase slip in a carbon nanotube with thin NbSe2 proximity[105].
图 7 碳纳米管-超导体异质结的拓扑态电场构建方案. (a) 碳纳米管-超导体异质结器件示意图, 在横向电场下诱导出马约拉纳束缚态; (b) 低电场下, 只有一个能带分支形成p波配对; (c) 高电场下, 两个能带分支都形成p波配对[122]
Fig. 7. Topological state scheme based on carbon nanotubes-superconductors heterojunction with electric field. (a) Schematic diagram of a carbon nanotube-superconductor heterojunction device, where Majorana bound states can be induced by strong transverse electric field. (b) One branch is in the p-wave phase at low electric field. (c) Both branches are in the p-wave phase at high electric field[122].
图 8 基于周期性空间分布的化学势和磁场的一维拓扑器件构建方案. (a) 通过静电栅极阵列在一维体系中实现周期性化学势的调控; (b)通过纳米尺度磁体阵列或本征磁畴结构诱导产生周期性磁场[126]
Fig. 8. Topological device scheme based on periodically and spatially modulated chemical potential and magnetic fields. (a) Periodically modulated chemical potentials induced by electrostatic gate arrays; (b) Periodically modulated magnetic field induced by nanomagnetic arrays or intrinsic domain structure in magnetic substrates[126].
-
[1] Winkelmann C B, Roch N, Wernsdorfer W, Bouchiat V and Balestro F 2009 Nat. Phys. 5 876
Google Scholar
[2] De Franceschi S, Kouwenhoven L, Schönenberger C and Wernsdorfer W 2010 Nat. Nanotechnol. 5 703
Google Scholar
[3] Doh Y J, van Dam J A, Roest A L, Bakkers E P A M, Kouwenhoven L P and De Franceschi S 2005 Science 309 272
Google Scholar
[4] Jarillo-Herrero P, van Dam J A and Kouwenhoven L P 2006 Nature 439 953
Google Scholar
[5] Heersche H B, Jarillo-Herrero P, Oostinga J B, Vandersypen L M K and Morpurgo A F 2007 Nature 446 56
Google Scholar
[6] Qu F M, Yang F, Shen J, Ding Y, Chen J, Ji Z Q, Liu G T, Fan J, Jing X N, Yang C L and Lu L 2012 Sci. Rep. 2 339
Google Scholar
[7] Veldhorst M, Snelder M, Hoek M, Gang T, Guduru V K, Wang X L, Zeitler U, van der Wiel W G, Golubov A A, Hilgenkamp H and Brinkman A 2012 Nat. Mater. 11 417
Google Scholar
[8] Bockrath M, Cobden D H, Lu J, Rinzler A G, Smalley R E, Balents L and McEuen P L 1999 Nature 397 598
Google Scholar
[9] Deshpande V V, Chandra B, Caldwell R, Novikov D S, Hone J and Bockrath M 2009 Science 323 106
Google Scholar
[10] Deshpande V V and Bockrath M 2008 Nat. Phys. 4 314
Google Scholar
[11] Li S, Kang N, Caroff P and Xu H Q 2017 Phys. Rev. B 95 014515
Google Scholar
[12] Hensgens T, Fujita T, Janssen L, Li X, Van Diepen C J, Reichl C, Wegscheider W, Das Sarma S and Vandersypen L M K 2017 Nature 548 70
Google Scholar
[13] Xiang J, Vidan A, Tinkham M, Westervelt R M and Lieber C M 2006 Nat. Nanotechnol. 1 208
Google Scholar
[14] He J J, Tanaka Y and Nagaosa N 2023 Nat. Commun. 14 3330
Google Scholar
[15] Herrmann L G, Portier F, Roche P, Yeyati A L, Kontos T and Strunk C 2010 Phys. Rev. Lett. 104 026801
Google Scholar
[16] Nayak C, Simon S H, Stern A, Freedman M and Das Sarma S 2008 Rev. Mod. Phys. 80 1083
Google Scholar
[17] Maeno Y, Ikeda A, and Mattoni G 2024 Nat. Phys. 20 1712
Google Scholar
[18] Dutta B, Umansky V, Banerjee M and Heiblum M 2022 Science 377 1198
Google Scholar
[19] Fu L, and Kane C L 2008 Phys. Rev. Lett. 100 096407
Google Scholar
[20] Mourik V, Zuo K, Frolov S M, Plissard S R, Bakkers E P A M and Kouwenhoven L P 2012 Science 336 1003
Google Scholar
[21] Yang F, Ding Y, Qu F M, Shen J, Chen J, Wei Z C, Ji Z Q, Liu G T, Fan J, Yang C L, Xiang T and Lu L 2012 Phys. Rev. B 85 104508
Google Scholar
[22] Wang D F, Kong L Y, Fan P, Chen H, Zhu S Y, Liu W Y, Cao L, Sun Y J, Du S X, Schneeloch J, Zhong R D, Gu G D, Fu L, Ding H and Gao H J 2018 Science 362 333
Google Scholar
[23] 徐磊, 李沛岭, 吕昭征, 沈洁, 屈凡明, 刘广同, 吕力 2023 72 177401
Google Scholar
Xu L, Li P L, Lü Z Z, Shen J, Qu F M, Liu G T and Lü L 2023 Acta Phys. Sin. 72 177401
Google Scholar
[24] 初纯光, 王安琦, 廖志敏 2023 72 087401
Google Scholar
Chu C G L, Wang A Q and Liao Z M 2023 Acta Phys. Sin. 72 087401
Google Scholar
[25] Qi J J, Chen C Z, Song J T, Liu J, He K, Sun Q F and Xie X C 2025 Sci. China Phys. Mech. Astron. 68 227401
Google Scholar
[26] 吕博赛, 娄硕, 沈沛约, 史志文 2024 物理 53 683
Google Scholar
Lyu B S, Lou S, Shen P Y and Shi Z W 2024 PHYSICS 53 683
Google Scholar
[27] Yazdani A, von Oppen F, Halperin B I and Yacoby A 2023 Science 380 1235
[28] Lutchyn R M, Sau J D and Das Sarma S 2010 Phys. Rev. Lett. 105 077001
Google Scholar
[29] Oreg Y, Refael G and von Oppen F 2010 Phys. Rev. Lett. 105 177002
Google Scholar
[30] Lutchyn R M, Bakkers E P A M, Kouwenhoven L P, Krogstrup P, Marcus C M and Oreg Y 2018 Nat. Rev. Mater. 3 52
Google Scholar
[31] Dmytruk O and Klinovaja J 2018 Phys. Rev. B 97 155409
Google Scholar
[32] Nichele F, Chesi S, Hennel S, Wittmann A, Gerl C, Wegscheider W, Loss D, Ihn T and Ensslin K 2014 Phys. Rev. Lett. 113 046801
Google Scholar
[33] Miserev D S, Srinivasan A, Tkachenko O A, Tkachenko V A, Farrer I, Ritchie D A, Hamilton A R and Sushkov O P 2017 Phys. Rev. Lett. 119 116803
Google Scholar
[34] Nilsson H A, Caroff P, Thelander C, Larsson M, Wagner J B, Wernersson L E, Samuelson L and Xu H Q 2009 Nano Lett. 9 3151
Google Scholar
[35] Fasth C, Fuhrer A, Samuelson L, Golovach V N and Loss D 2007 Phys. Rev. Lett. 98 266801
Google Scholar
[36] Pribiag V S, Nadj-Perge S, Frolov S M, van den Berg J W G, van Weperen I, Plissard S R, Bakkers E P A M and Kouwenhoven L P 2013 Nat. Nanotechnol. 8 170
Google Scholar
[37] Das A, Ronen Y, Most Y, Oreg Y, Heiblum M and Shtrikman H 2012 Nat. Phys. 8 887
Google Scholar
[38] Deng M T, Yu C L, Huang G Y, Larsson M, Caroff P and Xu H Q 2012 Nano Lett. 12 6414
Google Scholar
[39] Nadj-Perge S, Drozdov I K, Li J, Chen H, Jeon S, Seo J, MacDonald A H, Bernevig B A and Yazdani A 2014 Science 346 602
Google Scholar
[40] Sasaki S, Kriener M, Segawa K, Yada K, Tanaka Y, Sato M and Ando Y 2011 Phys. Rev. Lett. 107 217001
Google Scholar
[41] Fornieri A, Whiticar A M, Setiawan F, Marin E P, Drachmann A C C, Keselman A, Gronin S, Thomas C, Wang T, Kallaher R, Gardner G C, Berg E, Manfra M J, Stern A, Marcus C M and Nichele F 2019 Nature 569 89
Google Scholar
[42] Sun H H, Zhang K W, Hu L H, Li C, Wang G Y, Ma H Y, Xu Z A, Gao C L, Guan D D, Li Y Y, Liu C H, Qian D, Zhou Y, Fu L, Li S C, Zhang F C and Jia J F 2016 Phys. Rev. Lett. 116 257003
Google Scholar
[43] Prada E, San-Jose P, de Moor M W A, Geresdi A, Lee E J H, Klinovaja J, Loss D, Nygård J, Aguado R and Kouwenhoven L P 2020 Nat. Rev. Phys. 2 575
Google Scholar
[44] Li S, Kang N, Fan D X, Wang L B, Huang Y Q, Caroff P and Xu H Q 2016 Sci. Rep. 6 24822
Google Scholar
[45] Plissard S R, van Weperen I, Car D, Verheijen M A, Immink G W G, Kammhuber J, Cornelissen L J, Szombati D B, Geresdi A, Frolov S M, Kouwenhoven L P and Bakkers E P A M 2013 Nat. Nanotechnol. 8 859
Google Scholar
[46] He J, Pan D, Yang G, Liu M, Ying J, Lyu Z, Fan J, Jing X, Liu G, Lu B, Liu D E, Zhao J, Lu L and Qu F 2020 Phys. Rev. B 102 075121
Google Scholar
[47] Luthi F, Stavenga T, Enzing O W, Bruno A, Dickel C, Langford N K, Rol M A, Jespersen T S, Nygård J, Krogstrup P and DiCarlo L 2018 Phys. Rev. Lett. 120 100502
Google Scholar
[48] Hays M, Fatemi V, Bouman D, Cerrillo J, Diamond S, Serniak K, Connolly T, Krogstrup P, Nygård J, Levy Yeyati A, Geresdi A and Devoret M H 2021 Science 373 430
Google Scholar
[49] Thomas C, Hatke A T, Tuaz A, Kallaher R, Wu T, Wang T, Diaz R E, Gardner G C, Capano M A and Manfra M J 2018 Phys. Rev. Mater. 2 104602
Google Scholar
[50] Lee J S, Shojaei B, Pendharkar M, Feldman M, Mukherjee K and Palmstrøm C J 2019 Phys. Rev. Mater. 3 014603
Google Scholar
[51] Lei Z, Lehner C A, Cheah E, Karalic M, Mittag C, Alt L, Scharnetzky J, Wegscheider W, Ihn T and Ensslin K 2019 Appl. Phys. Lett. 115 012101
Google Scholar
[52] Mittag C, Karalic M, Lei Z, Thomas C, Tuaz A, Hatke A T, Gardner G C, Manfra M J, Ihn T and Ensslin K 2019 Phys. Rev. B 100 075422
Google Scholar
[53] Microsoft Quantum 2023 Phys. Rev. B 107 245423
Google Scholar
[54] Krogstrup P, Ziino N L B, Chang W, Albrecht S M, Madsen M H, Johnson E, Nygård J, Marcus C M and Jespersen T S 2015 Nat. Mater. 14 400
Google Scholar
[55] Vaitiekėnas S, Krogstrup P and Marcus C M 2020 Phys. Rev. B 101 060507
Google Scholar
[56] Deng M T, Vaitiekėnas S, Hansen E B, Danon J, Leijnse M, Flensberg K, Nygård J, Krogstrup P and Marcus C M 2016 Science 354 1557
Google Scholar
[57] Albrecht S M, Higginbotham A P, Madsen M, Kuemmeth F, Jespersen T S, Nygård J, Krogstrup P and Marcus C M 2016 Nature 531 206
Google Scholar
[58] Albrecht S M, Hansen E B, Higginbotham A P, Kuemmeth F, Jespersen T S, Nygård J, Krogstrup P, Danon J, Flensberg K and Marcus C M 2017 Phys. Rev. Lett. 118 137701
Google Scholar
[59] Bordin A, Wang G, Liu C-X, ten Haaf S L D, van Loo N, Mazur G P, Xu D, van Driel D, Zatelli F, Gazibegovic S, Badawy G, Bakkers E P A M, Wimmer M, Kouwenhoven L P and Dvir T 2023 Phys. Rev. X 13 031031
[60] Mazur G P, van Loo N, van Driel D, Wang J Y, Badawy G, Gazibegovic S, Bakkers E P A M and Kouwenhoven L P 2022 arXiv: 2211. 14283 [cond-mat.supr-con]
[61] Pendharkar M, Zhang B, Wu H, Zarassi A, Zhang P, Dempsey C P, Lee J S, Harrington S D, Badawy G, Gazibegovic S, Op het Veld R L M, Rossi M, Jung J, Chen A-H, Verheijen M A, Hocevar M, Bakkers E P A M, Palmstrøm C J and Frolov S M 2021 Science 372 508
Google Scholar
[62] Kanne T, Marnauza M, Olsteins D, Carrad D J, Sestoft J E, de Bruijckere J, Zeng L, Johnson E, Olsson E, Grove-Rasmussen K and Nygård J 2021 Nat. Nanotechnol. 16 776
Google Scholar
[63] Vaitiekėnas S, Liu Y, Krogstrup P and Marcus C M 2021 Nat. Phys. 17 43
Google Scholar
[64] Liu Y, Vaitiekėnas S, Martí-Sánchez S, Koch C, Hart S, Cui Z, Kanne T, Khan S A, Tanta R, Upadhyay S, Cachaza M E, Marcus C M, Arbiol J, Moler K A and Krogstrup P 2020 Nano Lett. 20 456
Google Scholar
[65] Vaitiekėnas S, Winkler G W, van Heck B, Karzig T, Deng M T, Flensberg K, Glazman L I, Nayak C, Krogstrup P, Lutchyn R M and Marcus C M 2020 Science 367 1442
[66] Valentini M, Peñaranda F, Hofmann A, Brauns M, Hauschild R, Krogstrup P, San-Jose P, Prada E, Aguado R and Katsaros G 2021 Science 373 82
Google Scholar
[67] Woods B D, Das Sarma S and Stanescu T D 2019 Phys. Rev. B 99 161118
Google Scholar
[68] San-Jose P, PayáC, Marcus C M, Vaitiekėnas S and Prada E 2023 Phys. Rev. B 107 155423
Google Scholar
[69] San-Jose P, Prada E and Aguado R 2012 Phys. Rev. Lett. 108 257001
Google Scholar
[70] Legg H F, Laubscher K, Loss D and Klinovaja J 2023 Phys. Rev. B 108 214520
Google Scholar
[71] Wimmer M, Akhmerov A R, Dahlhaus J P and Beenakker C W J 2011 New. J. Phys. 13 053016
Google Scholar
[72] Danon J, Hellenes A B, Hansen E B, Casparis L, Higginbotham A P and Flensberg K 2020 Phys. Rev. Lett. 124 036801
Google Scholar
[73] Pikulin D I, van Heck B, Karzig T, Martinez E A, Nijholt B, Laeven T, Winkler G W, Watson J D, Heedt S, Temurhan M, Svidenko V, Lutchyn R M, Thomas M, de Lange G, Casparis L and Nayak C 2021 arXiv: 2103. 12217. [cond-mat.mes-hall]
[74] Hess R, Legg H F, Loss D and Klinovaja J 2023 Phys. Rev. Lett. 130 207001
Google Scholar
[75] Rosdahl T Ö, Vuik A, Kjaergaard M and Akhmerov A R 2018 Phys. Rev. B 97 045421
Google Scholar
[76] Banerjee A, Lesser O, Rahman M A, Thomas C, Wang T, Manfra M J, Berg E, Oreg Y, Stern A and Marcus C M 2023 Phys. Rev. Lett. 130 096202
Google Scholar
[77] Pan H, Sau J D and Das Sarma S 2021 Phys. Rev. B 103 014513
Google Scholar
[78] Tsintzis A, Souto R S, Flensberg K, Danon J and Leijnse M 2024 PRX Quantum 5 010323
Google Scholar
[79] Leijnse M and Flensberg K 2012 Phys. Rev. B 86 134528
Google Scholar
[80] Dvir T, Wang G, van Loo N, Liu C X, Mazur G P, Bordin A, ten Haaf S L D, Wang J Y, van Driel D, Zatelli F, Li X, Malinowski F K, Gazibegovic S, Badawy G, Bakkers E P A M, Wimmer M and Kouwenhoven L P 2023 Nature 614 445
Google Scholar
[81] Bordin A, Li X, van Driel D, Wolff J C, Wang Q, ten Haaf S L D, Wang G, van Loo N, Kouwenhoven L P and Dvir T 2024 Phys. Rev. Lett. 132 056602
Google Scholar
[82] Laird E A, Kuemmeth F, Steele G A, Grove-Rasmussen K, Nygård J, Flensberg K and Kouwenhoven L P 2015 Rev. Mod. Phys. 87 703
Google Scholar
[83] Minot E D, Yaish Y, Sazonova V, Park J Y, Brink M and McEuen P L 2003 Phys. Rev. Lett. 90 156401
Google Scholar
[84] Minot E D, Yaish Y, Sazonova V and McEuen P L 2004 Nature 428 536
Google Scholar
[85] Jhang S H, Marganska M, Skourski Y, Preusche D, Grifoni M, Wosnitza J and Strunk C 2011 Phys. Rev. Lett. 106 096802
Google Scholar
[86] Deshpande V V, Chandra B, Caldwell R, Novikov D S, Hone J and Bockrath M 2009 Science 323 106
Google Scholar
[87] Deng X, Gong K, Wang Y, Liu Z, Jiang K, Kang N and Zhang Z 2023 Phys. Rev. Lett. 130 207002
Google Scholar
[88] Jin Z, Chu H B, Wang J Y, Hong J X, Tan W C and Li Y 2007 Nano Lett. 7 2073
Google Scholar
[89] Wang X S, Li Q Q, Xie J, Jin Z, Wang J Y, Li Y, Jiang K L and Fan S S 2009 Nano Lett. 9 3137
Google Scholar
[90] Kong J, Yenilmez E, Tombler T W, Kim W, Dai H J, Laughlin R B, Liu L, Jayanthi C S and Wu S Y 2001 Phys. Rev. Lett. 87 106801
Google Scholar
[91] Liang W J, Bockrath M, Bozovic D, Hafner J H, Tinkham M and Park H 2001 Nature 411 665
Google Scholar
[92] Javey A, Guo J, Wang Q, Lundstrom M and Dai H J 2003 Nature 424 654
Google Scholar
[93] Zhang Z Y, Liang X L, Wang S, Yao K, Hu Y F, Zhu Y Z, Chen Q, Zhou W W, Li Y, Yao Y G, Zhang J and Peng L M 2007 Nano Lett. 7 3603
Google Scholar
[94] Urgell C, Yang W, De Bonis S L, Samanta C, Esplandiu M J, Dong Q, Jin Y and Bachtold A 2020 Nat. Phys. 16 32
Google Scholar
[95] Wen Y, Ares N, Schupp F J, Pei T, Briggs G A D and Laird E A 2020 Nat. Phys. 16 75
Google Scholar
[96] Wang S, Zhao S H, Shi Z W, Wu F Q, Zhao Z Y, Jiang L L, Watanabe K, Taniguchi T, Zettl A, Zhou C W and Wang F 2020 Nat. Mater. 19 986
Google Scholar
[97] Wu C C, Liu C H and Zhong Z H 2010 Nano Lett. 10 1032
Google Scholar
[98] Pei F, Laird E A, Steele G A and Kouwenhoven L P 2012 Nat. Nanotechnol. 7 630
Google Scholar
[99] Zhang R F, Ning Z Y, Zhang Y Y, Xie H H, Zhang Q, Qian W Z, Chen Q and Wei F 2013 Nanoscale 5 6584
Google Scholar
[100] Zhang R F, Ning Z Y, Zhang Y Y, Zheng Q S, Chen Q, Xie H H, Zhang Q, Qian W Z and Wei F 2013 Nat. Nanotechnol. 8 912
Google Scholar
[101] Zhang R F, Zhang Y Y, Zhang Q, Xie H H, Wang H D, Nie J Q, Wen Q and Wei F 2013 Nat. Commun. 4 1727
Google Scholar
[102] Shen B Y, Zhu Z X, Zhang J Y, Xie H H, Bai Y X and Wei F 2018 Adv. Mater. 30 1705844
Google Scholar
[103] Kasumov A Y, Deblock R, Kociak M, Reulet B, Bouchiat H, Khodos I I, Gorbatov Y B, Volkov V T, Journet C and Burghard M 1999 Science 284 1508
Google Scholar
[104] Mergenthaler M, Schupp F J, Nersisyan A, Ares N, Baumgartner A, Schönenberger C, Briggs G A D, Leek P J and Laird E A 2021 Mater. Quantum. Technol. 1 035003
Google Scholar
[105] Bauml C, Bauriedl L, Marganska M, Grifoni M, Strunk C and Paradiso N 2021 Nano Lett. 21 8627
Google Scholar
[106] Sau J D and Tewari S 2013 Phys. Rev. B 88 054503
Google Scholar
[107] Huertas-Hernando D, Guinea F and Brataas A 2006 Phys. Rev. B 74 155426
Google Scholar
[108] Min H, Hill J E, Sinitsyn N A, Sahu B R, Kleinman L and MacDonald A H 2006 Phys. Rev. B 74 165310
Google Scholar
[109] Kuemmeth F, Ilani S, Ralph D C and McEuen P L 2008 Nature 452 448
Google Scholar
[110] Marganska M, Milz L, Izumida W, Strunk C and Grifoni M 2018 Phys. Rev. B 97 075141
Google Scholar
[111] Milz L, Izumida W, Grifoni M and Marganska M 2019 Phys. Rev. B 100 155417
Google Scholar
[112] Zhou B T, Yuan N F Q, Jiang H L and Law K T 2016 Phys. Rev. B 93 180501
Google Scholar
[113] Xi X X, Wang Z F, Zhao W W, Park J H, Law K T, Berger H, Forro L, Shan J and Mak K F 2016 Nat. Phys. 12 139
Google Scholar
[114] Saito Y, Nakamura Y, Bahramy M S, Kohama Y, Ye J T, Kasahara Y, Nakagawa Y, Onga M, Tokunaga M, Nojima T, Yanase Y and Iwasa Y 2016 Nat. Phys. 12 144
Google Scholar
[115] Lu J M, Zheliuk O, Leermakers I, Yuan N F Q, Zeitler U, Law K T and Ye J T 2015 Science 350 1353
Google Scholar
[116] Ye J T, Zhang Y J, Akashi R, Bahramy M S, Arita R and Iwasa Y 2012 Science 338 1193
Google Scholar
[117] de la Barrera S C, Sinko M R, Gopalan D P, Sivadas N, Seyler K L, Watanabe K, Taniguchi T, Tsen A W, Xu X D, Xiao D and Hunt B M 2018 Nat. Commun. 9 1427
Google Scholar
[118] Fatemi V, Wu S F, Cao Y, Bretheau L, Gibson Q D, Watanabe K, Taniguchi T, Cava R J and Jarillo-Herrero P 2018 Science 362 926
Google Scholar
[119] Lesser O, Shavit G and Oreg Y 2020 Phys. Rev. Res. 2 023254
Google Scholar
[120] Han T Y, Shen J Y, Yuan N F Q, Lin J X Z, Wu Z F, Wu Y Y, Xu S G, An L H, Long G, Wang Y W, Lortz R and Wang N 2018 Phys. Rev. B 97 060505
Google Scholar
[121] Kim M, Park G H, Lee J, Lee J H, Park J, Lee H, Lee G H and Lee H J 2017 Nano Lett. 17 6125
Google Scholar
[122] Klinovaja J, Gangadharaiah S and Loss D 2012 Phys. Rev. Lett. 108 196804
Google Scholar
[123] Klinovaja J, Schmidt M J, Braunecker B and Loss D 2011 Phys. Rev. Lett. 106 156809
Google Scholar
[124] Klinovaja J, Schmidt M J, Braunecker B and Loss D 2011 Phys. Rev. B 84 085452
Google Scholar
[125] Egger R and Flensberg K 2012 Phys. Rev. B 85 235462
Google Scholar
[126] Murra P, Inotani D, and Nitta M 2022 Phys. Rev. B 105 214525
Google Scholar
[127] Desjardins M M, Contamin L C, Delbecq M R, Dartiailh M C, Bruhat L E, Cubaynes T, Viennot J J, Mallet F, Rohart S, Thiaville A, Cottet A and Kontos T 2019 Nat. Mater. 18 1060
Google Scholar
[128] Klinovaja J, Stano P and Loss D 2012 Phys. Rev. Lett. 109 236801
Google Scholar
[129] Klinovaja J, Stano P, Yazdani A and Loss D 2013 Phys. Rev. Lett. 111 186805
Google Scholar
[130] Kjaergaard M, Wolms K and Flensberg K 2012 Phys. Rev. B 85 020503
Google Scholar
[131] Klinovaja J and Loss D 2013 Phys. Rev. X 3 011008
[132] Cottet A, Kontos T and Doucot B 2013 Phys. Rev. B 88 195415
Google Scholar
[133] van Woerkom D J, Proutski A, van Heck B, Bouman D, Vayrynen J I, Glazman L I, Krogstrup P, Nygard J, Kouwenhoven L P and Geresdi A 2017 Nat. Phys. 13 876
Google Scholar
[134] Vayrynen J I, Rastelli G, Belzig W and Glazman L I 2015 Phys. Rev. B 92 134508
Google Scholar
[135] Dartiailh M C, Kontos T, Doucot B and Cottet A 2017 Phys. Rev. Lett. 118 126803
Google Scholar
[136] Mergenthaler M, Nersisyan A, Patterson A, Esposito M, Baumgartner A, Schönenberger C, Briggs G A D, Laird E A and Leek P J 2021 Phys. Rev. Appl. 15 064050
Google Scholar
[137] Fatin G L, Matos-Abiague A, Scharf B and Zutic I 2016 Phys. Rev. Lett. 117 077002
Google Scholar
[138] Liu L J, Han J, Xu L, Zhou J S, Zhao C Y, Ding S J, Shi H W, Xiao M M, Ding L, Ma Z, Jin C H, Zhang Z Y and Peng L M 2020 Science 368 850
Google Scholar
[139] Mukhopadhyay R, Kane C L and Lubensky T C 2001 Phys. Rev. B 64 045120
Google Scholar
计量
- 文章访问数: 880
- PDF下载量: 27
- 被引次数: 0