-
Laser induced sintering, also known as laser enhanced contact optimization (LECO), can significantly reduce the contact resistance between metal electrodes and silicon in TOPCon solar cells, thereby improving its efficiency. This article first studied the effects of LECO process parameters such as reverse bias and laser intensity on the performance of TOPCon solar cells, and analyzed in detail their influencing mechanisms. In the LECO process, as the reverse bias voltage increases, the efficiency of the solar cell first increases and then decreases, while the contact resistivity first decreases and then increases. When the reverse bias voltage is high, the solar cell may be subjected to reverse breakdown. Once the solar cell is reverse breakdown, both the illuminated and non-illuminated areas are in a conducting state. Due to the current diversion effect, the local conducting current density in the illuminated area is much smaller compared to when the solar cell is not reverse broken down. Therefore, the Joule heating caused by this is also much smaller, and the contact resistance between the metal and silicon increases, resulting in a decrease in the efficiency of the solar cell.
Secondly, the influence of secondary high-temperature sintering and secondary LECO on the performance of TOPCon was studied. When the secondary sintering temperature increased from 280 0C to 680 0C, the efficiency of TOPCon sharply decreased from 26.35% to 1.3%. However, by subjecting the solar cells that have undergone secondary high-temperature sintering to secondary LECO treatment, the efficiency can be restored to the level before the secondary high-temperature sintering. Thirdly, TOPCon solar cells prepared using improved pure silver paste does not form effective metal-semiconductor contact between the silver electrode and silicon before LECO treatment, resulting in an average efficiency of only 0.02%. However, after LECO treatment, the efficiency of solar cells using pure silver paste increases to 26.35%, which is 0.41% higher than the reference solar cells using traditional silver aluminum paste. Fourthly, a physical model of LECO induced silver-silicon contact formation was proposed, providing a reasonable explanation for how secondary high-temperature sintering and secondary LECO treatment affect the performance of TOPCon. This is of great significance for further understanding and optimizing the application of LECO technology in TOPCon solar cells.-
Keywords:
- Laser-induced sintering /
- TOPCon solar cell /
- Contact formation /
- Secondary high-temperature sintering
-
[1] Feldmann F, Bivour M, Reichel C, Hermle M, Glunz S W 2014 Sol. Energy Mater. Sol. Cells 120 270
[2] Richter A, Müller R, Benick J 2021 Nat. Energy 6 429
[3] Anderson C L, Nemeth W, Guthrey H 2023 Adv. Energy Mater.13 2203579
[4] Römer U, Peibst R, Ohrdes T,Lim B, Krügener J, Bugiel E, Wietler T, Brendel R 2014 Sol. Energy Mater. Sol. Cells 131 85
[5] Haase F, Hollemann C, Schäfer S, Merkle A, Rienäcker M, Krügener J, Brendel R, Peibst R 2018 Sol. Energy Mater. Sol. Cells 186 184
[6] Hermle M, Feldmann F, Bivour M, Goldschmidt J C, Glunz S W 2020 Appl. Phys. Rev. 7 021305
[7] Xiao Y P, Gao C, Wang T, Zhou L 2017 Acta Phys. Sin. 66 158801 (in Chinese) 66 158801 [肖友鹏,高超,王涛,周浪,2017 66 158801]
[8] Ren C C, Zhou J K, Zhang B Y, Liu Z, Zhao Y, Zhang X D, Hou G F 2021 Acta Phys. Sin. 70 178401 (in Chinese) [任程超,周佳凯,刘璋,赵颖,张晓丹,侯国付,2021 70 178401]
[9] Yan D, Cuevas A, Michel J,Zhang C, Wan Y M, Zhang X Y, Bullock J 2021 Joule 5 811
[10] Glunz S W,Steinhauser B, Polzin J, Luderer C, Grübel B, Niewelt T,Okasha A, Bories M,Nagel H, Krieg K, Feldmann F, Richter A, Bivour M, Hermle M 2021 Prog. Photovolt.: Res. Appl 31 341
[11] Richter A, Benick J, Feldmann F, Fell A, Hermle M, Glunz S W 2017 Sol. Energy Mater. Sol. Cells 173 96
[12] Steinkemper H, Hermle M, Glunz S W 2014 Sol. Energy Mater. Sol. Cells 131 46
[13] Schmidt J, Peibst R, Brendel R. 2018 Sol. Energy Mater. Sol. Cells 187 39
[14] Zhang X Y, Dumbrell R, Li W Q,Xu M Y, Yan D, Jin J S, Wang Z, Zheng P T, Liu C M, Yang J 2023 Prog. Photovolt.: Res. Appl. 31 369
[15] VDMA International technology roadmap for photovoltaic 2023 Frankfurt, Germany, 2023 p60
[16] https://ir.jinkosolar.com/news-releases/news-release-details/jinkosolars-high-efficiency-n-type-monocrystalline-silicon-3
[17] Wang Q, Guo K, Yuan L, Li L, Peng H, Li B, Wang A, Zhang L, Wu W, Ding J, Yuan N 2023 Sol. Energy Mater. Sol. Cells 253 112231
[18] Allen T G, Bullock J, Yang X, Javey A, Wolf S D 2019 Nat. Energy 4 914
[19] Cuevas A, Wan Y M, Yan D, Samundsett C, Allen T, Zhang X, Cui J, Bullock J 2018 Sol. Energy Mater. Sol. Cells 184 38
[20] Riegel S, Mutter F, Lauermann T, Terheiden B, Hahn G 2012 Energy Proc. 21 14
[21] Fritz S, Konig M, Riegel S, Herguth A, Horteis M, Hahn G 2015 IEEE J. Photovoltaics 5 145
[22] Kumar P, Pfeffer M, Willsch B, Eibl O, Koduvelikulathu L J, Mihailetchi L J, Kopecek R 2016 Sol. Energy Mater. Sol. Cells 157 200
[23] Urban T, Heimann M, Schmid A, Mette A, Heitmann J 2015 Energy Proc. 77 420
[24] Aoyama T, Aoki M, Sumita I, Yoshino Y, Ogura A 2016 Energy Proc. 98 106
[25] Fritz S, Emre E, Engelhardt J, Ebert S, Nowak N, Booth J, Hahn G 2016 Energy Proc. 92 925
[26] Mack S, Schube J, Fellmeth T,Feldmann F, Lenes M, Luchies J 2017 Phys. Rapid Res. Lett. 11 1700334
[27] Kiefer F, Krugener J, Heinemeyer F, Osten H J, Brendel R, Peibst R 2016 IEEE J. Photovoltaics 6 1175
[28] Liang L,Li Z G, Cheng L K, Takeda N, Carroll A F 2015 J. Appl. Phys. 117 215102
[29] Fritz S, Engelhardt J, Ebert S, Hahn G 2016 Phys. Status Solidi RRL 10 305
[30] Krassowski E, Großer S, Turek M, Henning A, Zhao H 2021 AIP Conf. Proc. 2367 020005
[31] Fellmeth T, Höffler H, Mack S, Krassowski E, Krieg K, Kafle B, Greulich J 2022 Prog. Photovolt.: Res. Appl. 30 1393
[32] Fan Y, Zou S, Zeng Y, Dai L, Wang Z, Lu Z, Sun H, Zhou X, Liao B, Su X 2024 Solar RRL, 2400268
[33] Dasgupta S, Ok Y W, Upadhyaya V D, Choi W J, Huang Y Y, Duttagupta Y, Rohatgi A 2022 IEEE J. Photovoltaics 12 1282
[34] Kuruganti V V, Isabella O, Mihailetchi V D 2024 Phys. Status Solidi A, 221 2300820
[35] Höffler H, Fellmeth T, Maischner F, Greulich J, Krassowski E, Henning A 2022 AIP Conf. Proc. 2487 110001
[36] Großer S, Krassowski E, Swatek S, Zhao H, Hagendorf C, 2022 IEEE J. Photovolt. 12 26
[37] Höffler H, Simon F, Krassowski E, Greulich J, 2022 12th Silicon PV Conference, Konstanz, March 2022
[38] Mayberry R, Myers K, Chandrasekaran V, Henning A, Zhao H, Hofmüller E 2019 36th European Photovoltaic Solar Energy Conference and Exhibition Marseille, France, September 2019
Metrics
- Abstract views: 46
- PDF Downloads: 0
- Cited By: 0