Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Review of Parameter extraction methods for single-diode model of solar cell

Xiao Wen-Bo Liu Wei-Qing Wu Hua-Ming Zhang Hua-Ming

Citation:

Review of Parameter extraction methods for single-diode model of solar cell

Xiao Wen-Bo, Liu Wei-Qing, Wu Hua-Ming, Zhang Hua-Ming
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In recent years, the parameter extraction methods of solar cell have attracted a lot of research attention. The reason is that the matching solar cell parameters can effectively reduce the influences of internal and external factors on photovoltaic efficiencies. In this paper, the five-parameter extraction methods of solar cell single-diode model are discussed in detail. The five parameters are the photocurrent, the reverse diode saturation current, the ideality factor of diode, the series resistance, and the shunt resistance. In fact, the existing research methods are classified as four categories, namely, analytically extracting parameter methods, extracting parameter methods with the help of Lambert W function, constructing or using special functions to extract parameter methods, and using intelligent algorithm to extract parameter methods. In this article, we not only elaborate their main theories and approaches, but also discuss their advantages and disadvantages. The main conclusion is that the analytical method for the extraction of solar cell model parameters requires some assumptions. Therefore, this method is fast but less accurate due to various approximations. In addition, the parameter extraction using the analytical method needs a thorough calculation, and deducing the actual values of (dI/dV)|V=Voc and (dI/dV)|I=Isc and peak power point is also challenging. When the five parameters of solar cell are calculated using the Lambert W-function method, the results show that the extraction process is easier when using the consecrated software such as MATLAB, but the larger computational time is needed. Generally, the Lambert-W function provides the exact explicit expression for parameter extraction. As a result, the accuracy of approximate solution using Lambert-W function is much higher than that of the above method. It is obvious that the accuracy of using special functions to extract cell parameters is limited by those function characteristics. Of course, those special functions, such as Green's function, seem to be complex approaches. The accuracy of the extracting cell parameters by using intelligent algorithm strongly depends on the type of fitting algorithm, the fitting criterion, objective function and the starting values of the parameters. Finally, based on the conducted review, the future research trend of parameter extraction is also predicted
      Corresponding author: Xiao Wen-Bo, xiaowenbo1570@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11264031), Jiangxi Province Science Major Program for Youths, China (Grant No. 20143ACB21011), Aeronautical Science Foundation of China (Grant Nos. 2017ZC56003, 20162856004), the Open Fund of the Key Laboratory of Nondestructive Testing of Ministry of Education, China (Grant No. ZD201629004), the Natural Science Foundation of Jiangxi Province, China (Grant No. 20151BAB207054), and the Special Fund of Nanchang Hangkong University Graduate, China (Grant No. YC2017051).
    [1]

    Shah A, Torres P, Tscharner R, Wyrsch N, Keppner H 1999 Science 258 692

    [2]

    Goetzberger A, Luther J, Willeke G 2002 Sol. Energ. Mater. Sol. Cells 74 1

    [3]

    Nelson J 2003 The Physics of Solar Cells (London:Imperial College Press) pp1-39

    [4]

    Wenham S R, Green M A, Watt M E, Corkish R, Sproul A 2011 Applied Photovaltaics (3rd Ed.) (New York:Earthscan) pp69-84

    [5]

    Askarzadeh A, Rezazadeh A 2013 Appl. Energ. 102 943

    [6]

    Kim W, Choi W 2010 Sol. Energy 84 1008

    [7]

    Caracciolo F, Dallago E, Finarelli D, Liberale A, Merhej P 2012 IEEE J. Photovolt. 2 173

    [8]

    Jordehi A 2016 Renew. Sust. Energ. Rev. 61 354

    [9]

    Li H I L, Ye Z, Ye J, Yang D, Du H 2015 Renew. Energ. 76 135

    [10]

    Gow J A, Manning C D 1996 6th International Conference on Power Electronics and Variable Speed Drives Nottingham, United Kingdom, September 23-25, 1996 p69

    [11]

    Nishioka K, Sakitani N, Uraoka Y, Fuyuki T 2007 Sol. Energ. Mater. Sol. Cells 91 1222

    [12]

    Bana S, Saini R 2016 Energy Reports 2 171

    [13]

    Khanna V, Das B, Bisht D, Singh P 2015 Renew. Energ. 78 105

    [14]

    Shockley W 1949 Bell Labs Tech. J. 28 435

    [15]

    Kammer D, Ludington M 1977 Am. J. Phys. 45 602

    [16]

    Pan B, Weng J, Chen S, Huang Y, Dai S 2014 J. Phys. D:Appl. Phys. 47 475503

    [17]

    Soto W, Klein S, Beckman W 2006 Sol. Energy 80 78

    [18]

    Ortiz-Conde A, Garcia Sanchez F J, Muci J 2006 Sol. Energ. Mater. Sol. Cells 90 352

    [19]

    Amit J, Sharma S, Kapoor A 2006 Sol. Energ. Mater. Sol. Cells 90 25

    [20]

    Villalva M, Gazoli J, Filho E 2009 IEEE Trans. Power Electr. 94 1198

    [21]

    Gottschalg R, Rommel M, Infield D G, Kearney M J 1999 Meas. Sci. Technol. 10 796

    [22]

    Chegaar M, Ouennoughi Z, Guechi F 2004 Vacuum 75 367

    [23]

    Haouari-Merbah M, Belhamel M, Tobias I, Ruiz J M 2005 Sol. Energ. Mater. Sol. Cells 87 225

    [24]

    Askarzadeh A, Rezazadeh A 2013 Sol. Energy 90 123

    [25]

    Siddiqui M, Abido M 2013 Appl. Soft Comput. 13 4608

    [26]

    Ishaque K, Salam Z 2011 Sol. Energy 85 2349

    [27]

    Dkhichi F, Oukarfi B, Fakkar A, Belbounaguia N 2014 Sol. Energy 110 781

    [28]

    Chan D, Phillips J, Phang J 1986 Solid State Electron. 29 329

    [29]

    Ishibashi K, Kimura Y, Niwano M 2008 J. Appl. Phys. 103 455

    [30]

    Batzelis E, Papathanassiou A 2016 IEEE Trans. Sustain. Energ. 7 504

    [31]

    Chenni R, Makhlouf M, Kerbache T, Bouzid A 2007 Energy 32 1724

    [32]

    Lun S, Du C, Yang G, Wang S, Guo T 2013 Sol. Energy 92 147

    [33]

    Ouennoughi Z, Chegaar M 1999 Solid State Electron. 43 1985

    [34]

    Sze S M, Kwok K N 2007 Physics of Semiconductor Devices (3rd Ed.) (Hoboken:John Wiley Sons) pp663-743

    [35]

    Easwarakhanthan T, Bottin J, Bouhouch I, Boutrit C 1986 Int. J. Solar Energy 4 1

    [36]

    Chegaar M, Ouennoughi Z, Hoffmann A 2001 Solid State Electron. 45 293

    [37]

    Rasool F, Drieberg M, Badruddin N, Singh B S M 2017 Sol. Energy 153 519

    [38]

    Chouder A, Silvestre S, Sadaoui N, Rahmani L 2012 Simul. Model. Pract. Th. 20 46

    [39]

    Rahman S, Varma R, Vanderheide T 2014 IET Renew. Power Gen. 8 217

    [40]

    Dolara, A, Leva S, Manzolini G 2015 Sol. Energy 119 83

    [41]

    Jain A, Kapoor A 2004 Sol. Energ. Mater. Sol. Cells 81 269

    [42]

    Zhang C, Zhang J, Hao Y, Lin Z, Zhu C 2011 J. Appl. Phys. 110 199

    [43]

    Khan F, Singh S, Husain M 2010 Sol. Energ. Mat. Sol. C. 94 1473

    [44]

    Ghani F, Rosengarten G, Duke M, Carson J 2014 Renew. Energ. 72 105

    [45]

    Carrero C, Rodriguez J, Ramirez D, Platero C 2010 Renew. Energ. 35 1103

    [46]

    Xiao W B, Liu M M, Yan C 2017 J. Nanoelectron. Optoelec. 12 189

    [47]

    Chen Y, Wang X, Li D, Hong R, Shen H 2011 Appl. Energ. 88 2239

    [48]

    Peng L L, Sun Y Z, Meng Z, Wang Y L, Xu Y 2013 J. Power Sources 227 131

    [49]

    Saleem H, Karmalkar S 2009 IEEE Electr. Device Lett. 30 349

    [50]

    Karmalkar S, Saleem H 2011 Sol. Energ. Mater. Sol. Cells 95 1076

    [51]

    Singh N, Jain A, Kapoor A 2009 Sol. Energ. Mater. Sol. Cells 93 1423

    [52]

    Perovich S M, Simic S K, Tosic D V, Bauk S I 2007 Appl. Math. Lett. 20 493

    [53]

    Charles J P, Abdelkrim M, Muoy Y H, Mialhe P 1981 Solar Cells 4 169

    [54]

    Jain A, Kapoor A 2005 Sol. Energ. Mater. Sol. Cells 85 391

    [55]

    Dash D P, Roshan R, Mahata S, Mallik S, Mahato S S 2015 J, Renew. Sustain. Ener. 7 950

    [56]

    Mallick S P, Dash D P, Mallik S, Roshan R, Mahata S 2017 Sol. Energy 153 360

    [57]

    Akbaba M, Aiattawi M 1995 Sol. Energ. Mater. Sol. Cells 37 123

    [58]

    Cavassilas N, Michelini F, Bescond M 2014 J. Renew. Sustain. Ener. 6 65

    [59]

    Ma T, Yang H, Lu L 2014 Sol. Energy 100 31

    [60]

    Bellia H, Youcef R, Fatima M 2014 NRIAG J. A. G. 3 53

    [61]

    Bonkoungou D, Koalaga Z, Njomo D, Zougmore F 2015 Int. J. Current Engineer. Technol. 5 3735

    [62]

    Jervase J, Bourdoucen H, Al-Lawati A 2001 Meas. Sci. Technol. 12 1922

    [63]

    Sellai A, Ouennoughi Z 2005 Int. J. Mod. Phys. C 16 1043

    [64]

    Patel Sanjaykumar J, Panchal Ashish K, Kheraj V 2013 J. Nano-Electro. Phys. 5 02008

    [65]

    Sellami A, Zagrouba M, Bouacha M, Bessas B 2007 Meas. Sci. Technol. 18 1472

    [66]

    Zagrouba M, Sellami A, Bouacha M, Ksouri M 2010 Sol. Energy 84 860

    [67]

    Gaing Z L 2003 IEEE Trans. Power Syst. 18 1187

    [68]

    Macabebe E, Sheppard C, Dyk E 2011 Sol. Energy 85 12

    [69]

    Munji M K, Okullo W, Dyk E, Vorster F 2010 Sol. Energ. Mater. Sol. Cells 94 2129

    [70]

    Ye M, Wang X, Xu Y 2009 J. Appl. Phys. 105 1948

    [71]

    Alhajri M, El-Naggar K, Al-Rashidi M, Al-Othman A 2012 Renew. Energ. 44 238

    [72]

    Rao R V, Savsani V J, Vakharia D P 2011 Comput. Aided Design 43 303

    [73]

    Patel S, Panchal A, Kheraj V 2014 Appl. Energ. 119 384

    [74]

    Singh K, Kho K, Rita S 2014 Int. J. Computat. Sci. Appl. 4 101

    [75]

    Laudani A, Lozito G, Fulginei F, Salvini A 2015 Int. J. Photoenergy 205 1

    [76]

    Laudani A, Fulginei F, Salvini A, Lozito G, Coco S 2014 Int. J. Photoenergy 204 1

    [77]

    Rajasekar N, Kumar N, Venugopalan R 2013 Sol. Energy 97 255

    [78]

    Guo L, Meng Z, Sun Y, Wang L 2016 Energ. Convers. Manage. 108 520

    [79]

    Ma J, Bi Z, Ting T, Hao S, Hao W 2016 Sol. Energy 132 606

    [80]

    Humada A, Hojabri M, Mekhilef S, Hamada H 2016 Renew. Sust. Energ. Rev. 56 494

    [81]

    Boutana N, Mellit A, Lughi V, Pavan A 2017 Energy 122 128

    [82]

    Bana S, Saini R 2017 Renew. Energ. 101 1299

  • [1]

    Shah A, Torres P, Tscharner R, Wyrsch N, Keppner H 1999 Science 258 692

    [2]

    Goetzberger A, Luther J, Willeke G 2002 Sol. Energ. Mater. Sol. Cells 74 1

    [3]

    Nelson J 2003 The Physics of Solar Cells (London:Imperial College Press) pp1-39

    [4]

    Wenham S R, Green M A, Watt M E, Corkish R, Sproul A 2011 Applied Photovaltaics (3rd Ed.) (New York:Earthscan) pp69-84

    [5]

    Askarzadeh A, Rezazadeh A 2013 Appl. Energ. 102 943

    [6]

    Kim W, Choi W 2010 Sol. Energy 84 1008

    [7]

    Caracciolo F, Dallago E, Finarelli D, Liberale A, Merhej P 2012 IEEE J. Photovolt. 2 173

    [8]

    Jordehi A 2016 Renew. Sust. Energ. Rev. 61 354

    [9]

    Li H I L, Ye Z, Ye J, Yang D, Du H 2015 Renew. Energ. 76 135

    [10]

    Gow J A, Manning C D 1996 6th International Conference on Power Electronics and Variable Speed Drives Nottingham, United Kingdom, September 23-25, 1996 p69

    [11]

    Nishioka K, Sakitani N, Uraoka Y, Fuyuki T 2007 Sol. Energ. Mater. Sol. Cells 91 1222

    [12]

    Bana S, Saini R 2016 Energy Reports 2 171

    [13]

    Khanna V, Das B, Bisht D, Singh P 2015 Renew. Energ. 78 105

    [14]

    Shockley W 1949 Bell Labs Tech. J. 28 435

    [15]

    Kammer D, Ludington M 1977 Am. J. Phys. 45 602

    [16]

    Pan B, Weng J, Chen S, Huang Y, Dai S 2014 J. Phys. D:Appl. Phys. 47 475503

    [17]

    Soto W, Klein S, Beckman W 2006 Sol. Energy 80 78

    [18]

    Ortiz-Conde A, Garcia Sanchez F J, Muci J 2006 Sol. Energ. Mater. Sol. Cells 90 352

    [19]

    Amit J, Sharma S, Kapoor A 2006 Sol. Energ. Mater. Sol. Cells 90 25

    [20]

    Villalva M, Gazoli J, Filho E 2009 IEEE Trans. Power Electr. 94 1198

    [21]

    Gottschalg R, Rommel M, Infield D G, Kearney M J 1999 Meas. Sci. Technol. 10 796

    [22]

    Chegaar M, Ouennoughi Z, Guechi F 2004 Vacuum 75 367

    [23]

    Haouari-Merbah M, Belhamel M, Tobias I, Ruiz J M 2005 Sol. Energ. Mater. Sol. Cells 87 225

    [24]

    Askarzadeh A, Rezazadeh A 2013 Sol. Energy 90 123

    [25]

    Siddiqui M, Abido M 2013 Appl. Soft Comput. 13 4608

    [26]

    Ishaque K, Salam Z 2011 Sol. Energy 85 2349

    [27]

    Dkhichi F, Oukarfi B, Fakkar A, Belbounaguia N 2014 Sol. Energy 110 781

    [28]

    Chan D, Phillips J, Phang J 1986 Solid State Electron. 29 329

    [29]

    Ishibashi K, Kimura Y, Niwano M 2008 J. Appl. Phys. 103 455

    [30]

    Batzelis E, Papathanassiou A 2016 IEEE Trans. Sustain. Energ. 7 504

    [31]

    Chenni R, Makhlouf M, Kerbache T, Bouzid A 2007 Energy 32 1724

    [32]

    Lun S, Du C, Yang G, Wang S, Guo T 2013 Sol. Energy 92 147

    [33]

    Ouennoughi Z, Chegaar M 1999 Solid State Electron. 43 1985

    [34]

    Sze S M, Kwok K N 2007 Physics of Semiconductor Devices (3rd Ed.) (Hoboken:John Wiley Sons) pp663-743

    [35]

    Easwarakhanthan T, Bottin J, Bouhouch I, Boutrit C 1986 Int. J. Solar Energy 4 1

    [36]

    Chegaar M, Ouennoughi Z, Hoffmann A 2001 Solid State Electron. 45 293

    [37]

    Rasool F, Drieberg M, Badruddin N, Singh B S M 2017 Sol. Energy 153 519

    [38]

    Chouder A, Silvestre S, Sadaoui N, Rahmani L 2012 Simul. Model. Pract. Th. 20 46

    [39]

    Rahman S, Varma R, Vanderheide T 2014 IET Renew. Power Gen. 8 217

    [40]

    Dolara, A, Leva S, Manzolini G 2015 Sol. Energy 119 83

    [41]

    Jain A, Kapoor A 2004 Sol. Energ. Mater. Sol. Cells 81 269

    [42]

    Zhang C, Zhang J, Hao Y, Lin Z, Zhu C 2011 J. Appl. Phys. 110 199

    [43]

    Khan F, Singh S, Husain M 2010 Sol. Energ. Mat. Sol. C. 94 1473

    [44]

    Ghani F, Rosengarten G, Duke M, Carson J 2014 Renew. Energ. 72 105

    [45]

    Carrero C, Rodriguez J, Ramirez D, Platero C 2010 Renew. Energ. 35 1103

    [46]

    Xiao W B, Liu M M, Yan C 2017 J. Nanoelectron. Optoelec. 12 189

    [47]

    Chen Y, Wang X, Li D, Hong R, Shen H 2011 Appl. Energ. 88 2239

    [48]

    Peng L L, Sun Y Z, Meng Z, Wang Y L, Xu Y 2013 J. Power Sources 227 131

    [49]

    Saleem H, Karmalkar S 2009 IEEE Electr. Device Lett. 30 349

    [50]

    Karmalkar S, Saleem H 2011 Sol. Energ. Mater. Sol. Cells 95 1076

    [51]

    Singh N, Jain A, Kapoor A 2009 Sol. Energ. Mater. Sol. Cells 93 1423

    [52]

    Perovich S M, Simic S K, Tosic D V, Bauk S I 2007 Appl. Math. Lett. 20 493

    [53]

    Charles J P, Abdelkrim M, Muoy Y H, Mialhe P 1981 Solar Cells 4 169

    [54]

    Jain A, Kapoor A 2005 Sol. Energ. Mater. Sol. Cells 85 391

    [55]

    Dash D P, Roshan R, Mahata S, Mallik S, Mahato S S 2015 J, Renew. Sustain. Ener. 7 950

    [56]

    Mallick S P, Dash D P, Mallik S, Roshan R, Mahata S 2017 Sol. Energy 153 360

    [57]

    Akbaba M, Aiattawi M 1995 Sol. Energ. Mater. Sol. Cells 37 123

    [58]

    Cavassilas N, Michelini F, Bescond M 2014 J. Renew. Sustain. Ener. 6 65

    [59]

    Ma T, Yang H, Lu L 2014 Sol. Energy 100 31

    [60]

    Bellia H, Youcef R, Fatima M 2014 NRIAG J. A. G. 3 53

    [61]

    Bonkoungou D, Koalaga Z, Njomo D, Zougmore F 2015 Int. J. Current Engineer. Technol. 5 3735

    [62]

    Jervase J, Bourdoucen H, Al-Lawati A 2001 Meas. Sci. Technol. 12 1922

    [63]

    Sellai A, Ouennoughi Z 2005 Int. J. Mod. Phys. C 16 1043

    [64]

    Patel Sanjaykumar J, Panchal Ashish K, Kheraj V 2013 J. Nano-Electro. Phys. 5 02008

    [65]

    Sellami A, Zagrouba M, Bouacha M, Bessas B 2007 Meas. Sci. Technol. 18 1472

    [66]

    Zagrouba M, Sellami A, Bouacha M, Ksouri M 2010 Sol. Energy 84 860

    [67]

    Gaing Z L 2003 IEEE Trans. Power Syst. 18 1187

    [68]

    Macabebe E, Sheppard C, Dyk E 2011 Sol. Energy 85 12

    [69]

    Munji M K, Okullo W, Dyk E, Vorster F 2010 Sol. Energ. Mater. Sol. Cells 94 2129

    [70]

    Ye M, Wang X, Xu Y 2009 J. Appl. Phys. 105 1948

    [71]

    Alhajri M, El-Naggar K, Al-Rashidi M, Al-Othman A 2012 Renew. Energ. 44 238

    [72]

    Rao R V, Savsani V J, Vakharia D P 2011 Comput. Aided Design 43 303

    [73]

    Patel S, Panchal A, Kheraj V 2014 Appl. Energ. 119 384

    [74]

    Singh K, Kho K, Rita S 2014 Int. J. Computat. Sci. Appl. 4 101

    [75]

    Laudani A, Lozito G, Fulginei F, Salvini A 2015 Int. J. Photoenergy 205 1

    [76]

    Laudani A, Fulginei F, Salvini A, Lozito G, Coco S 2014 Int. J. Photoenergy 204 1

    [77]

    Rajasekar N, Kumar N, Venugopalan R 2013 Sol. Energy 97 255

    [78]

    Guo L, Meng Z, Sun Y, Wang L 2016 Energ. Convers. Manage. 108 520

    [79]

    Ma J, Bi Z, Ting T, Hao S, Hao W 2016 Sol. Energy 132 606

    [80]

    Humada A, Hojabri M, Mekhilef S, Hamada H 2016 Renew. Sust. Energ. Rev. 56 494

    [81]

    Boutana N, Mellit A, Lughi V, Pavan A 2017 Energy 122 128

    [82]

    Bana S, Saini R 2017 Renew. Energ. 101 1299

  • [1] Yao Xin, Ding Yan-Li, Zhang Xiao-Dan, Zhao Ying. A review of the perovskite solar cells. Acta Physica Sinica, 2015, 64(3): 038805. doi: 10.7498/aps.64.038805
    [2] Zeng Xiang-An, Ai Bin, Deng You-Jun, Shen Hui. Study on light-induced degradation of silicon wafers and solar cells. Acta Physica Sinica, 2014, 63(2): 028803. doi: 10.7498/aps.63.028803
    [3] Gao Xian-Kun, Yao Chuan-An, Gao Xiang-Chuan, Yu Yong-Chang. Accuracy comparison between implicit and explicit single-diode models of photovoltaic cells and modules. Acta Physica Sinica, 2014, 63(17): 178401. doi: 10.7498/aps.63.178401
    [4] Han An-Jun, Sun Yun, Li Zhi-Guo, Li Bo-Yan, He Jing-Jing, Zhang Yi, Liu Wei. The high efficiency sub-micrometer Cu(In, Ga)Se2 solar cell prepared on low temperature. Acta Physica Sinica, 2013, 62(4): 048401. doi: 10.7498/aps.62.048401
    [5] Si Li-Ming, Hou Ji-Xuan, Liu Yong, Lü Xin. Extraction of effective constitutive parameters of active terahertz metamaterial with negative differential resistance carbon nanotubes. Acta Physica Sinica, 2013, 62(3): 037806. doi: 10.7498/aps.62.037806
    [6] Yan Guan-Hua, Yan Peng-Cheng, Hou Wei, Wu Hao. A method of abrupt change process analysis based on Logistic model and its applications. Acta Physica Sinica, 2013, 62(7): 079202. doi: 10.7498/aps.62.079202
    [7] Zhou Mei, Zhao De-Gang. Influence of structure parameters on the performance of p-i-n InGaN solar cell. Acta Physica Sinica, 2012, 61(16): 168402. doi: 10.7498/aps.61.168402
    [8] Wang Yu-Ling, Sun Yi-Ze, Peng Le-Le, Xu Yang. Parameter extraction for photovoltaic module based on Lambert W function. Acta Physica Sinica, 2012, 61(24): 248402. doi: 10.7498/aps.61.248402
    [9] Fang Xin, Shen Wen-Zhong. Oxygen and carbon behaviors in multi-crystalline silicon and their effect on solar cell conversion efficiency. Acta Physica Sinica, 2011, 60(8): 088801. doi: 10.7498/aps.60.088801
    [10] Yu Huang-Zhong, Zhou Xiao-Ming, Deng Jun-Yu. Annealing treatment effects on the performances of solar cells based on different solvent blend systems. Acta Physica Sinica, 2011, 60(7): 077206. doi: 10.7498/aps.60.077206
    [11] Chen Shuang-Hong, Weng Jian, Wang Li-Jun, Zhang Chang-Neng, Huang Yang, Jiang Nian-Quan, Dai Song-Yuan. The study of interface and photoelectric performance of dye-sensitized solar cells in the applied negative bias. Acta Physica Sinica, 2011, 60(12): 128404. doi: 10.7498/aps.60.128404
    [12] Kou Dong-Xing, Liu Wei-Qing, Hu Lin-Hua, Huang Yang, Dai Song-Yuan, Jiang Nian-Quan. The investigation on the mechanism of enhanced performance of dye-sensitized solar cells after anode modified. Acta Physica Sinica, 2010, 59(8): 5857-5862. doi: 10.7498/aps.59.5857
    [13] Huang Yang, Dai Song-Yuan, Chen Shuang-Hong, Hu Lin-Hua, Kong Fan-Tai, Kou Dong-Xing, Jiang Nian-Quan. Model for series resistance photovoltaic performance of large-scale dye-sensitized solar cells. Acta Physica Sinica, 2010, 59(1): 643-648. doi: 10.7498/aps.59.643
    [14] Cai Hong-Kun, Tao Ke, Wang Lin-Shen, Zhao Jing-Fang, Sui Yan-Ping, Zhang De-Xian. Interface treatment of amorphous silicon thin film solar cells on flexible substrate. Acta Physica Sinica, 2009, 58(11): 7921-7925. doi: 10.7498/aps.58.7921
    [15] Ge Ji, Jin Zhi, Su Yong-Bo, Cheng Wei, Liu Xin-Yu, Wu De-Xin. A physical-model of small-signal InP-based double heterojunction bipolar transistors and its parameter extraction technique. Acta Physica Sinica, 2009, 58(12): 8584-8590. doi: 10.7498/aps.58.8584
    [16] Weng Jian, Xiao Shang-Feng, Chen Shuang-Hong, Dai Song-Yuan. Research on the dye-sensitized solar cell module. Acta Physica Sinica, 2007, 56(6): 3602-3606. doi: 10.7498/aps.56.3602
    [17] Dai Song-Yuan, Kong Fan-Tai, Hu Lin-Hua, Shi Cheng-Wu, Fang Xia-Qin, Pan Xu, Wang Kong-Jia. Investigation on the dye-sensitized solar cell. Acta Physica Sinica, 2005, 54(4): 1919-1926. doi: 10.7498/aps.54.1919
    [18] Xu Wei-Wei, Dai Song-Yuan, Fang Xia-Qin, Hu Lin-Hua, Kong Fan-Tai, Pan Xu, Wang Kong-Jia. Optimization of photoelectrode introduced to dye-sensitized solar cells by anodic oxidative hydrolysis. Acta Physica Sinica, 2005, 54(12): 5943-5948. doi: 10.7498/aps.54.5943
    [19] Zeng Long-Yue, Dai Song-Yuan, Wang Kong-Jia, Shi Cheng-Wu, Kong Fan-Tai, Hu Lin-Hua, Pan Xu. The mechanism of dye-sensitized solar cell based on nanocrystalline ZnO films. Acta Physica Sinica, 2005, 54(1): 53-57. doi: 10.7498/aps.54.53
    [20] Liu Hai-Wen, Sun Xiao-Wei, Cheng Zhi-Qun, Che Yan-Feng, Li Zheng-Fan. A novel,yet direct,parameter-extraction method for heterojuction bipolar transis tors small-signal model. Acta Physica Sinica, 2003, 52(9): 2298-2303. doi: 10.7498/aps.52.2298
Metrics
  • Abstract views:  7838
  • PDF Downloads:  350
  • Cited By: 0
Publishing process
  • Received Date:  26 May 2018
  • Accepted Date:  25 June 2018
  • Published Online:  05 October 2018

/

返回文章
返回
Baidu
map