搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新型硒化锑薄膜太阳电池背接触优化

李学锐 林俊辉 唐戎 郑壮豪 苏正华 陈烁 范平 梁广兴

引用本文:
Citation:

新型硒化锑薄膜太阳电池背接触优化

李学锐, 林俊辉, 唐戎, 郑壮豪, 苏正华, 陈烁, 范平, 梁广兴

Back contact optimization for Sb2Se3 solar cells

Li Xue-Rui, Lin Jun-Hui, Tang Rong, Zheng Zhuang-Hao, Su Zheng-Hua, Chen Shuo, Fan Ping, Liang Guang-Xing
PDF
HTML
导出引用
  • 硒化锑(Sb2Se3)具有低毒、原材料丰富和光电性能优异等优点, 被认为是最具有发展潜力的薄膜太阳电池光吸收层材料之一. 但目前Sb2Se3薄膜太阳电池光电转换效率与碲化镉、铜铟镓硒和钙钛矿等太阳电池相比仍存在较大差距. 限制Sb2Se3薄膜太阳电池光电转换效率进一步提升的关键因素之一是, 太阳电池结构中Mo背电极和Sb2Se3薄膜构建的背接触界面处容易形成较高的势垒, 降低载流子的抽取效率. 本工作则对Mo背电极进行热处理生成缓冲层MoO2薄膜, 发现缓冲层MoO2的引入, 可有效地促进Sb2Se3薄膜的择优取向生长, 同时实现太阳电池Mo/MoO2/Sb2Se3背接触势垒降低, 相应的填充因子、开路电压和短路电流密度均获得显著提高, 构建的太阳电池光电转换效率从5.04%提升至7.05%.
    Antimony selenide (Sb2Se3) has advantages of low-toxicity, abundant and excellent photoelectric properties. It is widely considered as one of the most promising light-harvesting materials for thin-film solar cells. However, the power conversion efficiency of the Sb2Se3 thin-film solar cell is still far inferior to that of cadmium telluride, copper indium gallium selenium and perovskite solar cells. As is well known, the Sb2Se3 solar cell performance is closely related to the light absorber layer (crystallinity, composition, bulk defect density, etc.), PN heterojunction quality (charge carrier concertation, energy band alignment, interface defect density, etc.) and back-contact barrier formation, which determines the process of carrier generation, excitation, relaxation, transfer and recombination. The low fill factor is one of the core problems that limit further efficiency improvement of Sb2Se3 solar cells, which can be attributed to the high potential barrier at the back contact between the Mo electrode and Sb2Se3 absorption layer. In this work, a heat treatment is applied to the Mo electrode to generate a MoO2 buffer layer. It can be found that this buffer layer can inhibit MoSe2 film growth, exhibiting better Ohmic contact with Sb2Se3, and reducing the back contact barrier of the solar cell. The Sb2Se3 thin film is prepared by an effective combination reaction involving sputtered and selenized Sb precursor. After introducing the MoO2 buffer layer, it can also promote the formation of (hk1) (including (211), (221), (002), etc.) preferentially oriented Sb2Se3 thin films with average grain size over 1 μm. And the ratio of Sb to Se is optimized from 0.57 to 0.62, approaching to the stoichiometric ratio of Sb2Se3 thin film and inhibiting the formation of Vse and SbSe defects. Finally, it enhances the open-circuit voltage (VOC) of solar cells from 0.473 to 0.502 V, the short-circuit current density (JSC) from 22.71 to 24.98 mA/cm2, and the fill factor (FF) from 46.90% to 56.18%, thereby increasing the power conversion efficiency (PCE) from 5.04% to 7.05%. This work proposes a facile strategy for interfacial treatment and elucidates the related carrier transport enhancement mechanism, thus paving a bright avenue to breaking through the efficiency bottleneck of Sb2Se3 thin film solar cells.
      通信作者: 梁广兴, lgx@szu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 62074102)、广东省自然科学基金(批准号: 2022A1515010979)和深圳市高等院校稳定支持计划重点项目(批准号: 20220808165025003)资助的课题.
      Corresponding author: Liang Guang-Xing, lgx@szu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62074102), the Natural Science Foundation of Guangdong Province, China (Grant No. 2022A1515010979), and the Science and Technology Plan Project of Shenzhen, China (Grant No. 20220808165025003).
    [1]

    Duan Z T, Liang X Y, Feng Y, Ma H Y, Liang B L, Wang Y, Luo S P, Wang S F, Schropp R E I, Mai Y H, Li Z Q 2022 Adv. Mater. 34 2202969Google Scholar

    [2]

    Chen S, Liu T X, Zheng Z H, Ishaq M, Liang G X, Fan P, Chen T, Tang J 2022 J Energy Chem. 67 508Google Scholar

    [3]

    Zhou Y, Wang L, Chen S Y, Qin S K, Liu X S, Chen J, Xue D J, Luo M, Cao Y Z, Chen Y B, Sargent E H, Tang J 2015 Nat. Photonics 9 409Google Scholar

    [4]

    Hadke S, Huang M L, Chen C, Tay Y F, Chen S Y, Tang J, Wong L 2022 Chem. Rev. 122 10170Google Scholar

    [5]

    Rajpure K Y, Bhosale C H 2002 Mater. Chem. Phys. 73 6Google Scholar

    [6]

    Choi Y C, Mandal T N, Yang W S, Lee Y H, Im S K, Noh J H, Seok S 2014 Angew. Chem. Int. Ed. 126 1353Google Scholar

    [7]

    Zhou Y, Leng M Y, Xia Z, Zhong J, Song H B, Liu X S, Yang B, Zhang J P, Chen J, Zhou K H, Han J B, Cheng Y B, Tang J 2014 Adv. Energy Mater. 4 1301864Google Scholar

    [8]

    Wang X, Tang R, Yin Y W, Ju H X, Li S A, Zhu C F, Chen T 2019 Sol. Energy Mater. Sol. Cells 189 5Google Scholar

    [9]

    Wang L, Li D B, Li K H, Chen C, Deng H X, Gao L, Zhao Y, Jiang F, Li L Y, Huang F, He Y S, Song H S, Niu G D, Tang J 2017 Nat. Energy 2 17046Google Scholar

    [10]

    Wen X X, Chen C, Lu S C, Li K H, Kondrotas R, Zhao Y, Chen W H, Gao L, Wang C, Zhang J, Niu G D, Tang J 2018 Nat. Commun. 9 2179Google Scholar

    [11]

    Liang G X, Zheng Z H, Fan P, Luo J T, Hu J G, Zhang X H, Ma H L, Fan B, Luo Z K, Zhang D P 2018 Sol. Energy Mater. Sol. Cells 174 263Google Scholar

    [12]

    Liang G X, Zhang X H, Ma H L, Hu J G, Fan B, Luo Z K, Zheng Z H, Luo J T, Fan P 2017 Sol. Energy Mater. Sol. Cells 160 257Google Scholar

    [13]

    Tang R, Zheng Z H, Su Z H, Li X J, Wei Y D, Zhang X H, Fu Y Q, Luo J T, Fan P, Liang G X 2019 Nano Energy 64 103929Google Scholar

    [14]

    Liang G X, Luo Y D, Chen S, Tang R, Zheng Z H, Li X J, Liu X S, Liu Y K, Li Y F, Chen X Y, Su Z H, Zhang X H, Ma H L, Fan P 2020 Nano Energy 73 104806Google Scholar

    [15]

    Tang R, Chen S, Zheng Z H, Su Z H, Luo J T, Fan P, Zhang X H, Tan J, Liang G X 2022 Adv. Mater. 34 2109078Google Scholar

    [16]

    Li J J, Zhang Y, Zhao W, Nam D, Cheong H, Wu L, Zhou Z Q, Sun Y 2015 Adv. Energy Mater. 5 1402178Google Scholar

    [17]

    Neugebohrn N, Hammer M S, Sayed M H, Michalowski P, Stroth C, Parisi J, Richter M 2017 J. Alloys Compd. 725 69Google Scholar

    [18]

    Li Z Q, Chen X, Zhu H B, Chen J W, Guo Y T, Zhang C, Zhang W, Niu X N, Mai Y H 2017 Sol. Energy Mater. Sol. Cells 161 190Google Scholar

    [19]

    Zhang J Y, Guo H F, Jia X G, Ning H, Ma C H, Wang X Q, Yuan N Y, Ding J N 2021 Sol. Energy 214 231Google Scholar

    [20]

    Wu H R, Zhou X C, Li J D, Li X M, Li B W, Fei W W, Zhou J X, Yin J, Guo W L 2018 Small 14 1802276Google Scholar

    [21]

    Lopez S C, Lopez I O P, Lara M C, Garcia A E, Sanchez M C M, Hernandez J A R, Lopez M C 2018 Phys. Status Solidi A. 215 1800226Google Scholar

    [22]

    曹宇, 刘超颖, 赵耀, 那艳玲, 江崇旭, 王长刚, 周静, 于皓 2022 71 038802Google Scholar

    Cao Y, Liu C Y, Zhao Y, Na Y L, Jiang C X, Wang C G, Zhou J, Yu H 2022 Acta Phys. Sin. 71 038802Google Scholar

    [23]

    Luo Y D, Tang R, Chen S, Hu J G, Liu Y K, Li Y F, Liu X S, ZhengZ H, Su Z H, Ma X F, Fan P, Zhang X H, Ma H L, Chen Z G, Liang G X 2020 Chem. Eng. J. 393 124599

    [24]

    曹宇, 祝新运, 陈翰博, 王长刚, 张鑫童, 侯秉东, 申明仁, 周静 2018 67 247301Google Scholar

    Cao Y, Zhu X Y, Chen H B, Wang C G, Zhang X T, Hou B D, Shen MR, Zhou J 2018 Acta Phys. Sin. 67 247301Google Scholar

    [25]

    Luo M, Leng M Y, Liu X S, Chen J, Chen C, Qin S K, Tang J 2014 Appl. Phys. Lett. 104 173904Google Scholar

  • 图 1  Sb2Se3薄膜太阳电池制备流程 (a) MoO2制备过程; (b) Mo/MoO2/Sb2Se3背接触结构图; (c) 磁控溅射制备Sb薄膜; (d) 采用后硒化工艺生长Sb2Se3薄膜; (e) 化学水浴法制备CdS薄膜; (f) 磁控溅射制备ITO薄膜; (g) Sb2Se3薄膜太阳电池结构图

    Fig. 1.  Fabrication process of Sb2Se3 solar cells: (a) MoO2 preparation; (b) back contact structure of Mo/MoO2/Sb2Se3; (c) sputtering Sb thin film; (d) post-selenation for Sb2Se3 thin film; (e) chemical bath deposition for CdS thin film; (f) sputtering ITO thin film; (g) Sb2Se3 solar cell sturcture.

    图 2  (a) W-MoO2和WO-MoO2样品的XRD图谱; (b) W-MoO2和WO-MoO2样品的拉曼图谱; (c) WO-MoO2样品的表面形貌; (d) W-MoO2样品的表面形貌; (e) WO-MoO2样品的剖面形貌图; (f) W-MoO2样品的剖面形貌图

    Fig. 2.  (a) XRD patterns of W-MoO2 and WO-MoO2 sample; (b) Raman patterns of W-MoO2 and WO-MoO2 sample; (c) surface morphology of WO-MoO2 sample; (d) surface morphology of W-MoO2 thin film; (e) cross sectional image of WO-MoO2 sample; (f) cross sectional image of W-MoO2 sample.

    图 3  (a) W-MoO2和WO-MoO2样品上生长Sb2Se3薄膜的XRD图谱; (b) 关于(360), (211), (221)和(002)衍射峰的TC值; (c) WO-MoO2样品上生长Sb2Se3薄膜的表面形貌; (d) W-MoO2样品上生长Sb2Se3薄膜的表面形貌; (e) WO-MoO2样品上生长Sb2Se3薄膜太阳电池的剖面形貌图; (f) W-MoO2样品上生长Sb2Se3薄膜太阳电池的剖面形貌图

    Fig. 3.  (a) XRD patterns of Sb2Se3 thin film prepared on W-MoO2 and WO-MoO2 samples; (b) TC value comparation of the diffraction peaks (360), (211), (221) and (002); (c) morphology of Sb2Se3 thin film prepared on WO-MoO2 samples; (d) morphology of Sb2Se3 thin film prepared on W-MoO2 samples; (e) cross sectional image of Sb2Se3 solar cells based on WO-MoO2 sample; (f) cross sectional image of Sb2Se3 solar cells based on W-MoO2 sample.

    图 4  (a) MoO2引入前后太阳电池的J - V曲线; (b) MoO2引入前后太阳电池的外量子效率EQE (左)和相应的积分电流(右); (c) MoO2引入前后Sb2Se3的禁带宽度; (d) MoO2引入前后乌尔巴赫能量(Eu)

    Fig. 4.  (a) J -V curve of solar cells before and after MoO2 introduction; (b) EQE curve (left) and integrating current (right) before and after MoO2 introduction; (c) Sb2Se3 bandgap calculated from EQE before and after MoO2 introduction; (d) Urbach energy (Eu) before and after MoO2 introduction.

    图 5  (a) MoO2引入前后太阳电池在暗态环境下测量的J-V曲线; (b) dJ/dV-V曲线; (c) dV/dJ-(J + Jsc)–1曲线; (d) ln(J + JscGV)-(VRJ)曲线

    Fig. 5.  (a) J-V curves of solar cell in dark state; (b) dJ/dV-V curves; (c) dV/dJ-(J + Jsc)–1 curves; (d) ln(J + JscGV)-(VRJ) curves

    图 6  (a) 太阳电池在暗态环境下测量的VOC-T曲线; (b) C-V和DLCP曲线; (c) 1/C 2-V曲线; (d) 暗态环境下测量背接触I-V曲线

    Fig. 6.  (a) Voc-T curves of solar cell in dark state; (b) C-V and DLCP curves; (c) 1/C 2-V curves; (d) I-V curves for back-contact in dark state.

    表 1  Sb2Se3薄膜的化学成分

    Table 1.  Composition in Sb2Se3 thin films.

    SamplesSb atomic percentage/%Se atomic percentage/%Sb/Se ratio
    WO- MoO236.3563.650.57
    W-MoO238.2761.730.62
    下载: 导出CSV

    表 2  太阳电池性能参数对比

    Table 2.  Comparison of solar cell performance.

    DevicesVOC/VJSC/(mA·cm–2)FF/%PCE/%
    WO-MoO20.47322.7146.905.04
    W-MoO20.50224.9856.187.05
    下载: 导出CSV

    表 3  太阳电池在暗态环境下测量的电学性能参数

    Table 3.  Solar cell performance in dark state.

    DevicesG/(mS·cm–2)R/(Ω·cm2)AJ0/(mA·cm–2)
    WO-MoO23.4910.022.152.65×10–2
    W-MoO20.058.951.966.16×10–3
    下载: 导出CSV

    表 4  太阳电池的界面性能参数

    Table 4.  Solar cell interface performance.

    DevicesEa/eVNi/cm–3x/nmVbi/mVSlop/(A·V–1)Resistance/Ω
    WO-MoO21.162.10×1016272.185250.07213.89
    W-MoO21.221.61×1016282.445500.09710.31
    下载: 导出CSV
    Baidu
  • [1]

    Duan Z T, Liang X Y, Feng Y, Ma H Y, Liang B L, Wang Y, Luo S P, Wang S F, Schropp R E I, Mai Y H, Li Z Q 2022 Adv. Mater. 34 2202969Google Scholar

    [2]

    Chen S, Liu T X, Zheng Z H, Ishaq M, Liang G X, Fan P, Chen T, Tang J 2022 J Energy Chem. 67 508Google Scholar

    [3]

    Zhou Y, Wang L, Chen S Y, Qin S K, Liu X S, Chen J, Xue D J, Luo M, Cao Y Z, Chen Y B, Sargent E H, Tang J 2015 Nat. Photonics 9 409Google Scholar

    [4]

    Hadke S, Huang M L, Chen C, Tay Y F, Chen S Y, Tang J, Wong L 2022 Chem. Rev. 122 10170Google Scholar

    [5]

    Rajpure K Y, Bhosale C H 2002 Mater. Chem. Phys. 73 6Google Scholar

    [6]

    Choi Y C, Mandal T N, Yang W S, Lee Y H, Im S K, Noh J H, Seok S 2014 Angew. Chem. Int. Ed. 126 1353Google Scholar

    [7]

    Zhou Y, Leng M Y, Xia Z, Zhong J, Song H B, Liu X S, Yang B, Zhang J P, Chen J, Zhou K H, Han J B, Cheng Y B, Tang J 2014 Adv. Energy Mater. 4 1301864Google Scholar

    [8]

    Wang X, Tang R, Yin Y W, Ju H X, Li S A, Zhu C F, Chen T 2019 Sol. Energy Mater. Sol. Cells 189 5Google Scholar

    [9]

    Wang L, Li D B, Li K H, Chen C, Deng H X, Gao L, Zhao Y, Jiang F, Li L Y, Huang F, He Y S, Song H S, Niu G D, Tang J 2017 Nat. Energy 2 17046Google Scholar

    [10]

    Wen X X, Chen C, Lu S C, Li K H, Kondrotas R, Zhao Y, Chen W H, Gao L, Wang C, Zhang J, Niu G D, Tang J 2018 Nat. Commun. 9 2179Google Scholar

    [11]

    Liang G X, Zheng Z H, Fan P, Luo J T, Hu J G, Zhang X H, Ma H L, Fan B, Luo Z K, Zhang D P 2018 Sol. Energy Mater. Sol. Cells 174 263Google Scholar

    [12]

    Liang G X, Zhang X H, Ma H L, Hu J G, Fan B, Luo Z K, Zheng Z H, Luo J T, Fan P 2017 Sol. Energy Mater. Sol. Cells 160 257Google Scholar

    [13]

    Tang R, Zheng Z H, Su Z H, Li X J, Wei Y D, Zhang X H, Fu Y Q, Luo J T, Fan P, Liang G X 2019 Nano Energy 64 103929Google Scholar

    [14]

    Liang G X, Luo Y D, Chen S, Tang R, Zheng Z H, Li X J, Liu X S, Liu Y K, Li Y F, Chen X Y, Su Z H, Zhang X H, Ma H L, Fan P 2020 Nano Energy 73 104806Google Scholar

    [15]

    Tang R, Chen S, Zheng Z H, Su Z H, Luo J T, Fan P, Zhang X H, Tan J, Liang G X 2022 Adv. Mater. 34 2109078Google Scholar

    [16]

    Li J J, Zhang Y, Zhao W, Nam D, Cheong H, Wu L, Zhou Z Q, Sun Y 2015 Adv. Energy Mater. 5 1402178Google Scholar

    [17]

    Neugebohrn N, Hammer M S, Sayed M H, Michalowski P, Stroth C, Parisi J, Richter M 2017 J. Alloys Compd. 725 69Google Scholar

    [18]

    Li Z Q, Chen X, Zhu H B, Chen J W, Guo Y T, Zhang C, Zhang W, Niu X N, Mai Y H 2017 Sol. Energy Mater. Sol. Cells 161 190Google Scholar

    [19]

    Zhang J Y, Guo H F, Jia X G, Ning H, Ma C H, Wang X Q, Yuan N Y, Ding J N 2021 Sol. Energy 214 231Google Scholar

    [20]

    Wu H R, Zhou X C, Li J D, Li X M, Li B W, Fei W W, Zhou J X, Yin J, Guo W L 2018 Small 14 1802276Google Scholar

    [21]

    Lopez S C, Lopez I O P, Lara M C, Garcia A E, Sanchez M C M, Hernandez J A R, Lopez M C 2018 Phys. Status Solidi A. 215 1800226Google Scholar

    [22]

    曹宇, 刘超颖, 赵耀, 那艳玲, 江崇旭, 王长刚, 周静, 于皓 2022 71 038802Google Scholar

    Cao Y, Liu C Y, Zhao Y, Na Y L, Jiang C X, Wang C G, Zhou J, Yu H 2022 Acta Phys. Sin. 71 038802Google Scholar

    [23]

    Luo Y D, Tang R, Chen S, Hu J G, Liu Y K, Li Y F, Liu X S, ZhengZ H, Su Z H, Ma X F, Fan P, Zhang X H, Ma H L, Chen Z G, Liang G X 2020 Chem. Eng. J. 393 124599

    [24]

    曹宇, 祝新运, 陈翰博, 王长刚, 张鑫童, 侯秉东, 申明仁, 周静 2018 67 247301Google Scholar

    Cao Y, Zhu X Y, Chen H B, Wang C G, Zhang X T, Hou B D, Shen MR, Zhou J 2018 Acta Phys. Sin. 67 247301Google Scholar

    [25]

    Luo M, Leng M Y, Liu X S, Chen J, Chen C, Qin S K, Tang J 2014 Appl. Phys. Lett. 104 173904Google Scholar

  • [1] 熊祥杰, 钟防, 张资文, 陈芳, 罗婧澜, 赵宇清, 朱慧平, 蒋绍龙. 二维范德瓦耳斯异质结Cs3X2I9/InSe (X = Bi, Sb)的光电性能.  , 2024, 73(13): 137101. doi: 10.7498/aps.73.20240434
    [2] 王月荣, 田汉民, 张登琪, 刘维龙, 马旭蕾. Cs2AgBi0.75Sb0.25Br6钙钛矿太阳能电池的优化设计.  , 2024, 73(2): 028802. doi: 10.7498/aps.73.20231299
    [3] 肖友鹏, 王怀平, 冯林. 硒化亚锗异质结太阳电池模拟研究.  , 2023, 72(24): 248801. doi: 10.7498/aps.72.20231220
    [4] 曹宇, 刘超颖, 赵耀, 那艳玲, 江崇旭, 王长刚, 周静, 于皓. 双电子传输层结构硫硒化锑太阳电池的界面特性优化.  , 2022, 71(3): 038802. doi: 10.7498/aps.71.20211525
    [5] 曹宇, 王长刚, 于皓. 双电子传输层结构硫硒化锑太阳电池的界面特性优化研究.  , 2021, (): . doi: 10.7498/aps.70.20211525
    [6] 曹宇, 蒋家豪, 刘超颖, 凌同, 孟丹, 周静, 刘欢, 王俊尧. 高效硫硒化锑薄膜太阳电池中的渐变能隙结构.  , 2021, 70(12): 128802. doi: 10.7498/aps.70.20202016
    [7] 王兰, 程思远, 曾航航, 谢聪伟, 龚元昊, 郑植, 范晓丽. CuBiI三元化合物晶体结构预测及光电性能第一性原理研究.  , 2021, 70(20): 207305. doi: 10.7498/aps.70.20210145
    [8] 肖友鹏, 王怀平, 李刚龙. Graphene/Ag2ZnSnSe4诱导p-n结薄膜太阳电池数值模拟.  , 2021, 70(1): 018801. doi: 10.7498/aps.70.20201194
    [9] 陈卓, 方磊, 陈远富. 三维多孔复合碳层对电极的制备及其光伏性能研究.  , 2019, 68(1): 017802. doi: 10.7498/aps.68.20181833
    [10] 曹宇, 祝新运, 陈翰博, 王长刚, 张鑫童, 侯秉东, 申明仁, 周静. 硒化锑薄膜太阳电池的模拟与结构优化研究.  , 2018, 67(24): 247301. doi: 10.7498/aps.67.20181745
    [11] 肖迪, 王东明, 李珣, 李强, 沈凯, 王德钊, 吴玲玲, 王德亮. 基于氧化镍背接触缓冲层碲化镉薄膜太阳电池的研究.  , 2017, 66(11): 117301. doi: 10.7498/aps.66.117301
    [12] 薛丁江, 石杭杰, 唐江. 新型硒化锑材料及其光伏器件研究进展.  , 2015, 64(3): 038406. doi: 10.7498/aps.64.038406
    [13] 袁怀亮, 李俊鹏, 王鸣魁. 有机无机杂化固态太阳能电池的研究进展.  , 2015, 64(3): 038405. doi: 10.7498/aps.64.038405
    [14] 徐炜炜, 胡林华, 罗向东, 刘培生, 戴松元. 基于薄膜电极溶胶修饰的染料敏化太阳电池光电特性研究.  , 2012, 61(8): 088801. doi: 10.7498/aps.61.088801
    [15] 耿俊杰, 张军, 张俊, 张义, 丁建军, 孙松, 罗震林, 鲍骏, 高琛. 叠层荧光集光太阳能光伏器件的性能模拟和优化.  , 2012, 61(3): 034201. doi: 10.7498/aps.61.034201
    [16] 陈双宏, 翁坚, 王利军, 张昌能, 黄阳, 姜年权, 戴松元. 负偏压作用下染料敏化太阳电池界面及光电性能研究.  , 2011, 60(12): 128404. doi: 10.7498/aps.60.128404
    [17] 黄阳, 戴松元, 陈双宏, 胡林华, 孔凡太, 寇东星, 姜年权. 大面积染料敏化太阳电池的串联阻抗特性研究.  , 2010, 59(1): 643-648. doi: 10.7498/aps.59.643
    [18] 金 鑫, 张晓丹, 雷志芳, 熊绍珍, 宋 峰, 赵 颖. 薄膜太阳电池用纳米上转换材料制备及其特性研究.  , 2008, 57(7): 4580-4584. doi: 10.7498/aps.57.4580
    [19] 宋慧瑾, 郑家贵, 冯良桓, 蔡 伟, 蔡亚萍, 张静全, 李 卫, 黎 兵, 武莉莉, 雷 智, 鄢 强. CdTe太阳电池的不同背电极和背接触层的特性研究.  , 2007, 56(3): 1655-1661. doi: 10.7498/aps.56.1655
    [20] 贺剑雄, 郑家贵, 李 卫, 冯良桓, 蔡 伟, 蔡亚平, 张静全, 黎 兵, 雷 智, 武莉莉, 王文武. CdTe薄膜太阳电池背接触的研究.  , 2007, 56(9): 5548-5553. doi: 10.7498/aps.56.5548
计量
  • 文章访问数:  7457
  • PDF下载量:  129
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-09
  • 修回日期:  2022-11-07
  • 上网日期:  2022-11-22
  • 刊出日期:  2023-02-05

/

返回文章
返回
Baidu
map