-
Solar cell has two basic units:the photon absorption layer and the contact layer. The contact layer is a region between the highly recombination-active metal interface and the photon absorption layer. It is vital to reduce the recombination loss between the photon absorption layer and the contact layer in pursuit of the higher conversion efficiency of silicon solar cell. In recent years, carrier selective contact is arousing research interest in photovoltaic industry because it is deemed as one of the last remaining obstacles in approaching to the theoretical efficiency limit of silicon solar cell. In this paper, three different types of carrier selective contacts are analyzed, which includes:1) sandwiching a heavily doped thin layer between the photon absorption layer and the metal interface, which is the so-called emitter or back surface field; 2) aligning the conduction bands or the valence bands of two materials; 3) inducing the band bending through a high work function metal oxide contacting crystalline silicon. Based on one-dimensional solar cell simulation software wxAMPS, three different silicon solar cell structures are numerically simulated, which includes:1) diffused homojunction silicon solar cell[(p+)c-Si/(n)c-Si/(n+)c-Si]; 2) silicon heterojunction solar cell with amorphous silicon thin films[(p+)a-Si/(i)a-Si/(n)c-Si/(i)a-Si/(n+)a-Si]; 3) silicon heterojunction solar cell with metal oxide thin films[(n)MoOx/(n)c-Si/(n)TiOx], then the energy band structures and the spatial distributions of carrier concentrations of solar cells in the dark are discussed. The simulation results show that the key factor of carrier selective contacts is the asymmetric spatial distribution of the carrier concentrations, i.e. the asymmetric conductivities of electrons and holes. This leads to the formation of high resistance to electrons and low resistance to holes, or high resistance to holes and low resistance to electrons, so the holes will go through the contact easily and the electrons will be blocked simultaneously, or the electrons will go through the contact easily and the holes will be blocked simultaneously. Therefore a hole selective contact or a electron selective contact is formed, respectively.
[1] de Wolf S, Descoeudres A, Holman Z C, Ballif C 2012 Green 2 7
[2] Yoshikawa K, Kawasaki H, Yoshida W, Irie T, Konishi K, Nakano K, Uto T, Adachi D, Kanematsu M, Uzu H, Yamamoto K 2017 Nature Energy 2 17032
[3] Richter A, Hermle M, Glunz S W 2013 IEEE J. Photovolt. 3 1184
[4] Feldmann F, Simon M, Bivour M, Reichel C, Hermle M, Glunz S W 2014 Appl. Phys. Lett. 104 181105
[5] Cuevas A, Allen T, Bullock J, Wan Y, Yan D, Zhang X 2015 Proceedings of the 42nd IEEE Photovoltaic Specialists Conference Los Angeles, USA, June 14-19, 2015 p1
[6] Wrfel P, Wrfel U 2009Physics of Solar Cells: From Basic Principles to Advanced Concepts (New York: John Wiley Sons) pp93-98
[7] Cuevas A, Yan D 2013 IEEE J. Photovolt. 3 916
[8] Wrfel U, Cuevas A, Wrfel P 2015 IEEE J. Photovolt. 5 461
[9] Brendel R, Peibst R 2016 IEEE J. Photovolt. 6 1413
[10] Bivour M, Macco B, Temmler J, Kessels W M M, Hermle M 2016 Energy Procedia 92 443
[11] Yablonovitch E, Gmitter T, Swanson R M, Kwark Y H 1985 Appl. Phys. Lett. 47 1211
[12] Liu Y M, Sun Y, Rockett A 2012 Sol. Energy Mater. Sol. Cells 98 124
[13] Zhao L, Zhou C L, Li H L, Diao H M, Wang W J 2008 Sol. Energy Mater. Sol. Cells 92 673
[14] Hua X, Li Z P, Shen W Z, Xiong G Y, Wang X S, Zhang L J 2012 IEEE Trans. Electron Dev. 59 1227
[15] Islam R, Nazif K N, Saraswat K C 2016 IEEE Trans. Electron Dev. 63 4788
[16] Bullock J, Cuevas A, Allen T, Battaglia C 2014 Appl. Phys. Lett. 105 232109
[17] Battaglia C, Yin X, Zheng M, Sharp I D, Chen T, McDonnell S, Azcatl A, Carraro C, Ma B, Maboudian R, Wallace R M, Javey A 2014 Nano Lett. 14 967
[18] Bullock J, Wan Y, Hettick M, Geissbhler J, Ong A J, Kiriya D, Yan D, Allen T, Peng J, Zhang X, Sutter-Fella C M, de Wolf S, Ballif C, Cuevas A, Javey A 2016 Proceedings of the 43rd IEEE Photovoltaic Specialists Conference Portland, USA, June 5-10, 2016 p0210
[19] Taguchi M, Yano A, Tohoda S, Matsuyama K, Nakamura Y, Nishiwaki T, Fujita K, Maruyama E 2014 IEEE J. Photovolt. 4 96
[20] Battaglia C, Nicols S M D, de Wolf S, Yin X, Zheng M, Ballif C, Javey A 2014 Appl. Phys. Lett. 104 113902
[21] Ghannam M, Shehadah G, Abdulraheem Y, Poortmans J 2014 Proceedings of the 28th European Photovoltaic Solar Energy Conference and Exhibition Paris, France, September 30-October 4, 2014 p822
[22] Rmer U, Peibst R, Ohrdes T, Lim B, Krgener J, Bugiel E, Wietler T, Brendel R 2014 Sol. Energy Mater. Sol. Cells 131 85
[23] Bivour M, Reichel C, Hermle M, Glunz S W 2012 Sol. Energy Mater. Sol. Cells 106 11
[24] Bivour M, Reusch M, Schrer S, Feldmann F, Temmler J, Steinkemper H, Hermle M 2014 IEEE J. Photovolt. 4 566
[25] Bivour M, Temmler J, Steinkemper H, Hermle M 2015 Sol. Energy Mater. Sol. Cells 142 34
[26] Geissbhler J, Werner J, Martin de Nicolas S, Barraud L, Hessler-Wyser A, Despeisse M, Nicolay S, Tomasi A, Niesen B, de Wolf S, Ballif C 2015 Appl. Phys. Lett. 107 081601
[27] Meyer J, Hamwi S, Krger M, Kowalsky W, Riedl T, Kahn A 2012 Adv. Mater. 24 5408
[28] Mcdonnell S, Azcatl A, Addou R, Gong C, Battaglia C, Chuang S, Cho K, Javey A, Wallace R M 2014 ACS Nano 8 6265
[29] Gerling L G, Voz C, Alcubilla R, Puigdollers J 2017 J. Mater. Res. 32 260
[30] Yang X, Zheng P, Bi Q, Weber K 2016 Sol. Energy Mater. Sol. Cells 150 32
[31] Gerling L G, Mahato S, Morales-Vilches A, Masmitja G, Ortega P, Voz C, Alcubilla R, Puigdollers J 2016 Sol. Energy Mater. Sol. Cells 145 109
[32] Almora O, Gerling L G, Voz C, Alcubilla R, Puigdollers J, Garcia-Belmonte G 2017 Sol. Energy Mater. Sol. Cells 168 221
-
[1] de Wolf S, Descoeudres A, Holman Z C, Ballif C 2012 Green 2 7
[2] Yoshikawa K, Kawasaki H, Yoshida W, Irie T, Konishi K, Nakano K, Uto T, Adachi D, Kanematsu M, Uzu H, Yamamoto K 2017 Nature Energy 2 17032
[3] Richter A, Hermle M, Glunz S W 2013 IEEE J. Photovolt. 3 1184
[4] Feldmann F, Simon M, Bivour M, Reichel C, Hermle M, Glunz S W 2014 Appl. Phys. Lett. 104 181105
[5] Cuevas A, Allen T, Bullock J, Wan Y, Yan D, Zhang X 2015 Proceedings of the 42nd IEEE Photovoltaic Specialists Conference Los Angeles, USA, June 14-19, 2015 p1
[6] Wrfel P, Wrfel U 2009Physics of Solar Cells: From Basic Principles to Advanced Concepts (New York: John Wiley Sons) pp93-98
[7] Cuevas A, Yan D 2013 IEEE J. Photovolt. 3 916
[8] Wrfel U, Cuevas A, Wrfel P 2015 IEEE J. Photovolt. 5 461
[9] Brendel R, Peibst R 2016 IEEE J. Photovolt. 6 1413
[10] Bivour M, Macco B, Temmler J, Kessels W M M, Hermle M 2016 Energy Procedia 92 443
[11] Yablonovitch E, Gmitter T, Swanson R M, Kwark Y H 1985 Appl. Phys. Lett. 47 1211
[12] Liu Y M, Sun Y, Rockett A 2012 Sol. Energy Mater. Sol. Cells 98 124
[13] Zhao L, Zhou C L, Li H L, Diao H M, Wang W J 2008 Sol. Energy Mater. Sol. Cells 92 673
[14] Hua X, Li Z P, Shen W Z, Xiong G Y, Wang X S, Zhang L J 2012 IEEE Trans. Electron Dev. 59 1227
[15] Islam R, Nazif K N, Saraswat K C 2016 IEEE Trans. Electron Dev. 63 4788
[16] Bullock J, Cuevas A, Allen T, Battaglia C 2014 Appl. Phys. Lett. 105 232109
[17] Battaglia C, Yin X, Zheng M, Sharp I D, Chen T, McDonnell S, Azcatl A, Carraro C, Ma B, Maboudian R, Wallace R M, Javey A 2014 Nano Lett. 14 967
[18] Bullock J, Wan Y, Hettick M, Geissbhler J, Ong A J, Kiriya D, Yan D, Allen T, Peng J, Zhang X, Sutter-Fella C M, de Wolf S, Ballif C, Cuevas A, Javey A 2016 Proceedings of the 43rd IEEE Photovoltaic Specialists Conference Portland, USA, June 5-10, 2016 p0210
[19] Taguchi M, Yano A, Tohoda S, Matsuyama K, Nakamura Y, Nishiwaki T, Fujita K, Maruyama E 2014 IEEE J. Photovolt. 4 96
[20] Battaglia C, Nicols S M D, de Wolf S, Yin X, Zheng M, Ballif C, Javey A 2014 Appl. Phys. Lett. 104 113902
[21] Ghannam M, Shehadah G, Abdulraheem Y, Poortmans J 2014 Proceedings of the 28th European Photovoltaic Solar Energy Conference and Exhibition Paris, France, September 30-October 4, 2014 p822
[22] Rmer U, Peibst R, Ohrdes T, Lim B, Krgener J, Bugiel E, Wietler T, Brendel R 2014 Sol. Energy Mater. Sol. Cells 131 85
[23] Bivour M, Reichel C, Hermle M, Glunz S W 2012 Sol. Energy Mater. Sol. Cells 106 11
[24] Bivour M, Reusch M, Schrer S, Feldmann F, Temmler J, Steinkemper H, Hermle M 2014 IEEE J. Photovolt. 4 566
[25] Bivour M, Temmler J, Steinkemper H, Hermle M 2015 Sol. Energy Mater. Sol. Cells 142 34
[26] Geissbhler J, Werner J, Martin de Nicolas S, Barraud L, Hessler-Wyser A, Despeisse M, Nicolay S, Tomasi A, Niesen B, de Wolf S, Ballif C 2015 Appl. Phys. Lett. 107 081601
[27] Meyer J, Hamwi S, Krger M, Kowalsky W, Riedl T, Kahn A 2012 Adv. Mater. 24 5408
[28] Mcdonnell S, Azcatl A, Addou R, Gong C, Battaglia C, Chuang S, Cho K, Javey A, Wallace R M 2014 ACS Nano 8 6265
[29] Gerling L G, Voz C, Alcubilla R, Puigdollers J 2017 J. Mater. Res. 32 260
[30] Yang X, Zheng P, Bi Q, Weber K 2016 Sol. Energy Mater. Sol. Cells 150 32
[31] Gerling L G, Mahato S, Morales-Vilches A, Masmitja G, Ortega P, Voz C, Alcubilla R, Puigdollers J 2016 Sol. Energy Mater. Sol. Cells 145 109
[32] Almora O, Gerling L G, Voz C, Alcubilla R, Puigdollers J, Garcia-Belmonte G 2017 Sol. Energy Mater. Sol. Cells 168 221
Catalog
Metrics
- Abstract views: 9751
- PDF Downloads: 488
- Cited By: 0