搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非晶硅太阳电池BZO/p-a-SiC:H接触特性改善的研究

王利 张晓丹 杨旭 魏长春 张德坤 王广才 孙建 赵颖

引用本文:
Citation:

非晶硅太阳电池BZO/p-a-SiC:H接触特性改善的研究

王利, 张晓丹, 杨旭, 魏长春, 张德坤, 王广才, 孙建, 赵颖

Study of the contact property between BZO and p-a-SiC in amorphous silicon solar cell

Wang Li, Zhang Xiao-Dan, Yang Xu, Wei Chang-Chun, Zhang De-Kun, Wang Guang-Cai, Sun Jan, Zhao Ying
PDF
导出引用
  • 采用重掺杂的p型微晶硅来改善前电极掺硼氧化锌 (ZnO:B) 和窗口层p型非晶硅碳 (p-a-SiC) 之间的非欧姆接触特性. 通过优化插入层p型微晶硅的沉积参数 (氢稀释比H2/SiH4、硼掺杂比B2H6/SiH4) 获得了较薄厚度下 (20 nm) 暗电导率高达4.2 S/cm的p型微晶硅材料. 在本征层厚度约为150 nm, 仅采用Al背反射电极的情况下,获得了效率6.37%的非晶硅顶电池(Voc=911 mV, FF=71.7%, Jsc=9.73 mA/cm2), 开路电压Voc和填充因子FF均较无插入层的电池有大幅提升.
    Highly conductive p-type microcrystalline silicon thin layer is inserted between the front layer (ZnO:B) and the window layer(p-a-SiC) in a p-i-n amorphous silicon solar cell, and the inserted layer is found to be able to eliminate the non-ohmic contact, which is caused by the difference in the work function between the ZnO:B and p-a-SiC. The properties of the p-type microcrystalline silicon are studied by varying layer thickness, hydrogen dilution ratio and B2H6/SiH4 ratio. The optimized p-type microcrystalline silicon film can have a dark conductivity as large as 4.2 S/cm at a thickeness of 20 nm. The p-i-n type amorphous silicon solar cell with the p-type microcrystalline silicon is shown to have a good open circuit voltage and fill factor compared with without the p-type microcrystalline silicon layer.
    • 基金项目: 国家重点基础研究发展计划 (批准号: 2011CBA00706, 2011CBA00707)、国家自然科学基金(批准号: 60976051) 和教育部新世纪人才项目 (批准号: NCET-08-0295) 资助的课题.
    • Funds: Project supported by the National Basic Research Program of China(Grant Nos. 2011CBA00706, 2011CBA00707), the National Natural Science Foundation of China(Grant No. 60976051), and the Program for New Century Excellent Talents in University of Ministry of Education of China (Grant No. NCET-08-0295).
    [1]

    Aberle A G 2009 Thin solids Films 517 4706

    [2]

    Green M A, Emery K, King D L, Hisikawa Y, Warta W 2006 Prog. Photovoltaics 14 45

    [3]

    Benagli S, Borrello D, Sauvain E V, Meier J 2009 Proceedings of the 24th EU PVSE C Hamburg, Germany, September 21-24, 2009 p293

    [4]

    Zhang X D, Zheng X X, Xu S Z, Lin Q, Wei C C, Sun J, Geng X H, Zhao Y 2011Chin. Phys. B 20 108801

    [5]

    Ding L, Boccard M, Bugnon G, Benkhaira M, Nicolay S, Despeisse M, Meillaud F, Ballif C 2012 Sol. Energy Mater. Sol. Cells 98 331

    [6]

    Meillaud F, Feltrin A, Despeisse M, Haug F J, Dominé D, Python M, Soderstrom T, Cuony P, Boccard M, Nicolay S, Ballif C 2011 Sol. Energy Mater. Sol. Cells 95 127

    [7]

    Wanka H N, Schubert M B, Lotter E 1996 Sol. Energy Mater. Sol. Cells 41 519

    [8]

    Yamamoto K, Yoshida H, Kokame K 2003 Proc. 3rd World Conf. on Photovoltaic Energy Conversion Osaka, Japan, May 17-20, 2003 S2O-B9-03

    [9]

    Kroll U, Torres P, Meier J, Selvan J 2011 26th European Photovoltaic Solar Energy Conference and Exhibiton Hamburg, Germany, September 5-8, 2011 p2287

    [10]

    Yunaz I A, Kasashima S, Inthisang S 2009 34th IEEE Photovoltaic Specialists Conference (PVSC) Philadelphia, USA, June 7-12, 2009 p001592

    [11]

    Bailat J, Domine D, Schluchter R, Steinhauser J, Fay S, Freitas F 2000 31th IEEE Semiconductor Interface Specialists Conference (SISC) Sa Diego, USA, December 7-9, 2000 p1533

    [12]

    Zhu F, Zeng K, Hu J, Shen L, Zhang K 2005 Mater. Res. Soc. Symp. Proc. 872 211

    [13]

    Koval R J, Chen C, Ferreira G M, Ferlauto A S 2002 Appl. Phys. Lett. 81 1258

    [14]

    Kondo M, Fukawa M, Guo L, Matsuda A 2002 J. Non Cryst. Solids 302 108

    [15]

    Rath J K, Schropp R E I 1998 Solar Energy Materials and Solar Cells 53 189

    [16]

    Shah A 2003 Thin Film Silicon Solar Cells (1st Edn.) (Switzerland: CRC Press) p311

    [17]

    Ballif C, Meillaud F, Feltrin A, Billet A 2011 26th European Photovoltaic Solar Energy Conference and Exhibition Hamburg, Germany, September 5-8, 2011 p941

    [18]

    Kobayashi T, Kawagishi T, Fukumuro N 2011 26th European Photovoltaic Solar Energy Conference and Exhibition Hamburg, Germany, September 5-8, 2011 p984

  • [1]

    Aberle A G 2009 Thin solids Films 517 4706

    [2]

    Green M A, Emery K, King D L, Hisikawa Y, Warta W 2006 Prog. Photovoltaics 14 45

    [3]

    Benagli S, Borrello D, Sauvain E V, Meier J 2009 Proceedings of the 24th EU PVSE C Hamburg, Germany, September 21-24, 2009 p293

    [4]

    Zhang X D, Zheng X X, Xu S Z, Lin Q, Wei C C, Sun J, Geng X H, Zhao Y 2011Chin. Phys. B 20 108801

    [5]

    Ding L, Boccard M, Bugnon G, Benkhaira M, Nicolay S, Despeisse M, Meillaud F, Ballif C 2012 Sol. Energy Mater. Sol. Cells 98 331

    [6]

    Meillaud F, Feltrin A, Despeisse M, Haug F J, Dominé D, Python M, Soderstrom T, Cuony P, Boccard M, Nicolay S, Ballif C 2011 Sol. Energy Mater. Sol. Cells 95 127

    [7]

    Wanka H N, Schubert M B, Lotter E 1996 Sol. Energy Mater. Sol. Cells 41 519

    [8]

    Yamamoto K, Yoshida H, Kokame K 2003 Proc. 3rd World Conf. on Photovoltaic Energy Conversion Osaka, Japan, May 17-20, 2003 S2O-B9-03

    [9]

    Kroll U, Torres P, Meier J, Selvan J 2011 26th European Photovoltaic Solar Energy Conference and Exhibiton Hamburg, Germany, September 5-8, 2011 p2287

    [10]

    Yunaz I A, Kasashima S, Inthisang S 2009 34th IEEE Photovoltaic Specialists Conference (PVSC) Philadelphia, USA, June 7-12, 2009 p001592

    [11]

    Bailat J, Domine D, Schluchter R, Steinhauser J, Fay S, Freitas F 2000 31th IEEE Semiconductor Interface Specialists Conference (SISC) Sa Diego, USA, December 7-9, 2000 p1533

    [12]

    Zhu F, Zeng K, Hu J, Shen L, Zhang K 2005 Mater. Res. Soc. Symp. Proc. 872 211

    [13]

    Koval R J, Chen C, Ferreira G M, Ferlauto A S 2002 Appl. Phys. Lett. 81 1258

    [14]

    Kondo M, Fukawa M, Guo L, Matsuda A 2002 J. Non Cryst. Solids 302 108

    [15]

    Rath J K, Schropp R E I 1998 Solar Energy Materials and Solar Cells 53 189

    [16]

    Shah A 2003 Thin Film Silicon Solar Cells (1st Edn.) (Switzerland: CRC Press) p311

    [17]

    Ballif C, Meillaud F, Feltrin A, Billet A 2011 26th European Photovoltaic Solar Energy Conference and Exhibition Hamburg, Germany, September 5-8, 2011 p941

    [18]

    Kobayashi T, Kawagishi T, Fukumuro N 2011 26th European Photovoltaic Solar Energy Conference and Exhibition Hamburg, Germany, September 5-8, 2011 p984

  • [1] 王强, 杨立学, 刘北云, 闫胤洲, 陈飞, 蒋毅坚. 本征富受主型ZnO微米管光致发光的温度调控机制.  , 2020, 69(19): 197701. doi: 10.7498/aps.69.20200655
    [2] 陈立晶, 李维学, 戴剑锋, 王青. Mn-N共掺p型ZnO的第一性原理计算.  , 2014, 63(19): 196101. doi: 10.7498/aps.63.196101
    [3] 朱顺明, 顾然, 黄时敏, 姚峥嵘, 张阳, 陈斌, 毛昊源, 顾书林, 叶建东, 郑有炓. 金属有机源化学气相沉积法生长氧化锌薄膜中氢气的作用及其机理.  , 2014, 63(11): 118103. doi: 10.7498/aps.63.118103
    [4] 王利, 张晓丹, 杨旭, 魏长春, 张德坤, 王广才, 孙建, 赵颖. 高绒度掺硼氧化锌透明导电薄膜用作非晶硅太阳电池前电极的研究.  , 2014, 63(2): 028801. doi: 10.7498/aps.63.028801
    [5] 任艳东, 郝淑娟, 邱忠阳. 表面等离子体增强氧化锌纳米带发光特性的研究.  , 2013, 62(14): 147302. doi: 10.7498/aps.62.147302
    [6] 姚光锐, 范广涵, 郑树文, 马佳洪, 陈峻, 章勇, 李述体, 宿世臣, 张涛. 第一性原理研究Te-N共掺p型ZnO.  , 2012, 61(17): 176105. doi: 10.7498/aps.61.176105
    [7] 李林娜, 陈新亮, 王斐, 孙建, 张德坤, 耿新华, 赵颖. H2 气对脉冲磁控溅射铝掺杂氧化锌薄膜性能的影响.  , 2011, 60(6): 067304. doi: 10.7498/aps.60.067304
    [8] 邓贝, 孙慧卿, 郭志友, 高小奇. B-N共掺杂改善p型ZnO的理论分析.  , 2010, 59(2): 1212-1218. doi: 10.7498/aps.59.1212
    [9] 胡志刚, 段满益, 徐明, 周勋, 陈青云, 董成军, 令狐荣锋. Fe和Ni共掺杂ZnO的电子结构和光学性质.  , 2009, 58(2): 1166-1172. doi: 10.7498/aps.58.1166
    [10] 尹桂来, 李建英, 李盛涛. 利用普适介电理论对银/氧化锌复合材料介电性能的研究.  , 2009, 58(6): 4219-4224. doi: 10.7498/aps.58.4219
    [11] 符秀丽, 唐为华, 彭志坚. 掺杂水平对ZnO基变阻器电学性能的影响.  , 2008, 57(9): 5844-5852. doi: 10.7498/aps.57.5844
    [12] 周 军, 方庆清, 王保明, 刘艳美, 李 貌, 闫方亮, 王胜男. 镁含量和热处理对Zn1-xMgxO薄膜结构和发光性能的影响.  , 2008, 57(10): 6614-6619. doi: 10.7498/aps.57.6614
    [13] 赵慧芳, 曹全喜, 李建涛. N,Ga共掺杂实现p型ZnO的第一性原理研究.  , 2008, 57(9): 5828-5832. doi: 10.7498/aps.57.5828
    [14] 杨银堂, 武 军, 蔡玉荣, 丁瑞雪, 宋久旭, 石立春. p型K:ZnO导电机理的第一性原理研究.  , 2008, 57(11): 7151-7156. doi: 10.7498/aps.57.7151
    [15] 肖 竞, 柏 鑫, 张耿民. 整齐排列的氧化锌纳米针阵列的场发射性能.  , 2008, 57(11): 7057-7062. doi: 10.7498/aps.57.7057
    [16] 沈益斌, 周 勋, 徐 明, 丁迎春, 段满益, 令狐荣锋, 祝文军. 过渡金属掺杂ZnO的电子结构和光学性质.  , 2007, 56(6): 3440-3445. doi: 10.7498/aps.56.3440
    [17] 黄运华, 张 跃, 白雪冬, 贺 建, 刘 娟, 张晓梅. ZnO双晶纳米梳.  , 2006, 55(3): 1491-1496. doi: 10.7498/aps.55.1491
    [18] 王 漪, 孙 雷, 韩德栋, 刘力锋, 康晋锋, 刘晓彦, 张 兴, 韩汝琦. ZnCoO稀磁半导体的室温磁性.  , 2006, 55(12): 6651-6655. doi: 10.7498/aps.55.6651
    [19] 韦志仁, 李 军, 刘 超, 林 琳, 郑一博, 葛世艳, 张华伟, 董国义, 窦军红. Cu对Zn1-xFexO稀磁半导体磁性的影响.  , 2006, 55(10): 5521-5524. doi: 10.7498/aps.55.5521
    [20] 倪赛力, 常永勤, 龙 毅, 叶荣昌. 氧化锌纳米棒场发射性能研究.  , 2006, 55(10): 5409-5412. doi: 10.7498/aps.55.5409
计量
  • 文章访问数:  6305
  • PDF下载量:  1012
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-09-18
  • 修回日期:  2012-10-31
  • 刊出日期:  2013-03-05

/

返回文章
返回
Baidu
map