-
太阳电池可看成由光子吸收层和接触层两个基本单元组成,接触层是高复合活性金属界面和光子吸收层之间的区域.为了进一步提高硅太阳电池的转换效率,关键是降低光子吸收层和接触之间的复合损失.近年来,载流子选择性接触引起了光伏界的研究兴趣,其被认为是接近硅太阳电池效率理论极限的最后的障碍之一.本文分析了三种类型的载流子选择性接触:在光子吸收层与金属界面之间引入薄的重掺杂层,即所谓的发射极或背面场;利用两种材料之间的导带或价带对齐;利用高功函数的金属氧化物与晶硅接触从而在晶硅中感应能带弯曲.基于一维太阳电池模拟软件wxAMPS,模拟了扩散同质结硅太阳电池[结构为(p+)c-Si/(n)c-Si/(n+)c-Si]、非晶硅薄膜硅异质结太阳电池[结构为(p+)a-Si/(i)a-Si/(n)c-Si/(i)a-Si/(n+)a-Si]和氧化物薄膜硅异质结太阳电池[结构为(n)MoOx/(n)c-Si/(n)TiOx]暗态下的能带结构和载流子浓度的空间分布,其中c-Si为晶硅;a-Si为非晶硅;(i),(n)和(p)分别表示本征、n型掺杂和p型掺杂.模拟结果表明:载流子选择性接触的核心是在接触处晶硅表面附近形成载流子浓度空间分布的不对称进而使得电导率的不对称,形成了对电子的高阻和空穴的低阻或者对空穴的高阻和电子的低阻,从而让空穴轻松通过同时阻挡电子,或者让电子轻松通过同时阻挡空穴,形成空穴选择性接触或者电子选择性接触.Solar cell has two basic units:the photon absorption layer and the contact layer. The contact layer is a region between the highly recombination-active metal interface and the photon absorption layer. It is vital to reduce the recombination loss between the photon absorption layer and the contact layer in pursuit of the higher conversion efficiency of silicon solar cell. In recent years, carrier selective contact is arousing research interest in photovoltaic industry because it is deemed as one of the last remaining obstacles in approaching to the theoretical efficiency limit of silicon solar cell. In this paper, three different types of carrier selective contacts are analyzed, which includes:1) sandwiching a heavily doped thin layer between the photon absorption layer and the metal interface, which is the so-called emitter or back surface field; 2) aligning the conduction bands or the valence bands of two materials; 3) inducing the band bending through a high work function metal oxide contacting crystalline silicon. Based on one-dimensional solar cell simulation software wxAMPS, three different silicon solar cell structures are numerically simulated, which includes:1) diffused homojunction silicon solar cell[(p+)c-Si/(n)c-Si/(n+)c-Si]; 2) silicon heterojunction solar cell with amorphous silicon thin films[(p+)a-Si/(i)a-Si/(n)c-Si/(i)a-Si/(n+)a-Si]; 3) silicon heterojunction solar cell with metal oxide thin films[(n)MoOx/(n)c-Si/(n)TiOx], then the energy band structures and the spatial distributions of carrier concentrations of solar cells in the dark are discussed. The simulation results show that the key factor of carrier selective contacts is the asymmetric spatial distribution of the carrier concentrations, i.e. the asymmetric conductivities of electrons and holes. This leads to the formation of high resistance to electrons and low resistance to holes, or high resistance to holes and low resistance to electrons, so the holes will go through the contact easily and the electrons will be blocked simultaneously, or the electrons will go through the contact easily and the holes will be blocked simultaneously. Therefore a hole selective contact or a electron selective contact is formed, respectively.
[1] de Wolf S, Descoeudres A, Holman Z C, Ballif C 2012 Green 2 7
[2] Yoshikawa K, Kawasaki H, Yoshida W, Irie T, Konishi K, Nakano K, Uto T, Adachi D, Kanematsu M, Uzu H, Yamamoto K 2017 Nature Energy 2 17032
[3] Richter A, Hermle M, Glunz S W 2013 IEEE J. Photovolt. 3 1184
[4] Feldmann F, Simon M, Bivour M, Reichel C, Hermle M, Glunz S W 2014 Appl. Phys. Lett. 104 181105
[5] Cuevas A, Allen T, Bullock J, Wan Y, Yan D, Zhang X 2015 Proceedings of the 42nd IEEE Photovoltaic Specialists Conference Los Angeles, USA, June 14-19, 2015 p1
[6] Wrfel P, Wrfel U 2009Physics of Solar Cells: From Basic Principles to Advanced Concepts (New York: John Wiley Sons) pp93-98
[7] Cuevas A, Yan D 2013 IEEE J. Photovolt. 3 916
[8] Wrfel U, Cuevas A, Wrfel P 2015 IEEE J. Photovolt. 5 461
[9] Brendel R, Peibst R 2016 IEEE J. Photovolt. 6 1413
[10] Bivour M, Macco B, Temmler J, Kessels W M M, Hermle M 2016 Energy Procedia 92 443
[11] Yablonovitch E, Gmitter T, Swanson R M, Kwark Y H 1985 Appl. Phys. Lett. 47 1211
[12] Liu Y M, Sun Y, Rockett A 2012 Sol. Energy Mater. Sol. Cells 98 124
[13] Zhao L, Zhou C L, Li H L, Diao H M, Wang W J 2008 Sol. Energy Mater. Sol. Cells 92 673
[14] Hua X, Li Z P, Shen W Z, Xiong G Y, Wang X S, Zhang L J 2012 IEEE Trans. Electron Dev. 59 1227
[15] Islam R, Nazif K N, Saraswat K C 2016 IEEE Trans. Electron Dev. 63 4788
[16] Bullock J, Cuevas A, Allen T, Battaglia C 2014 Appl. Phys. Lett. 105 232109
[17] Battaglia C, Yin X, Zheng M, Sharp I D, Chen T, McDonnell S, Azcatl A, Carraro C, Ma B, Maboudian R, Wallace R M, Javey A 2014 Nano Lett. 14 967
[18] Bullock J, Wan Y, Hettick M, Geissbhler J, Ong A J, Kiriya D, Yan D, Allen T, Peng J, Zhang X, Sutter-Fella C M, de Wolf S, Ballif C, Cuevas A, Javey A 2016 Proceedings of the 43rd IEEE Photovoltaic Specialists Conference Portland, USA, June 5-10, 2016 p0210
[19] Taguchi M, Yano A, Tohoda S, Matsuyama K, Nakamura Y, Nishiwaki T, Fujita K, Maruyama E 2014 IEEE J. Photovolt. 4 96
[20] Battaglia C, Nicols S M D, de Wolf S, Yin X, Zheng M, Ballif C, Javey A 2014 Appl. Phys. Lett. 104 113902
[21] Ghannam M, Shehadah G, Abdulraheem Y, Poortmans J 2014 Proceedings of the 28th European Photovoltaic Solar Energy Conference and Exhibition Paris, France, September 30-October 4, 2014 p822
[22] Rmer U, Peibst R, Ohrdes T, Lim B, Krgener J, Bugiel E, Wietler T, Brendel R 2014 Sol. Energy Mater. Sol. Cells 131 85
[23] Bivour M, Reichel C, Hermle M, Glunz S W 2012 Sol. Energy Mater. Sol. Cells 106 11
[24] Bivour M, Reusch M, Schrer S, Feldmann F, Temmler J, Steinkemper H, Hermle M 2014 IEEE J. Photovolt. 4 566
[25] Bivour M, Temmler J, Steinkemper H, Hermle M 2015 Sol. Energy Mater. Sol. Cells 142 34
[26] Geissbhler J, Werner J, Martin de Nicolas S, Barraud L, Hessler-Wyser A, Despeisse M, Nicolay S, Tomasi A, Niesen B, de Wolf S, Ballif C 2015 Appl. Phys. Lett. 107 081601
[27] Meyer J, Hamwi S, Krger M, Kowalsky W, Riedl T, Kahn A 2012 Adv. Mater. 24 5408
[28] Mcdonnell S, Azcatl A, Addou R, Gong C, Battaglia C, Chuang S, Cho K, Javey A, Wallace R M 2014 ACS Nano 8 6265
[29] Gerling L G, Voz C, Alcubilla R, Puigdollers J 2017 J. Mater. Res. 32 260
[30] Yang X, Zheng P, Bi Q, Weber K 2016 Sol. Energy Mater. Sol. Cells 150 32
[31] Gerling L G, Mahato S, Morales-Vilches A, Masmitja G, Ortega P, Voz C, Alcubilla R, Puigdollers J 2016 Sol. Energy Mater. Sol. Cells 145 109
[32] Almora O, Gerling L G, Voz C, Alcubilla R, Puigdollers J, Garcia-Belmonte G 2017 Sol. Energy Mater. Sol. Cells 168 221
-
[1] de Wolf S, Descoeudres A, Holman Z C, Ballif C 2012 Green 2 7
[2] Yoshikawa K, Kawasaki H, Yoshida W, Irie T, Konishi K, Nakano K, Uto T, Adachi D, Kanematsu M, Uzu H, Yamamoto K 2017 Nature Energy 2 17032
[3] Richter A, Hermle M, Glunz S W 2013 IEEE J. Photovolt. 3 1184
[4] Feldmann F, Simon M, Bivour M, Reichel C, Hermle M, Glunz S W 2014 Appl. Phys. Lett. 104 181105
[5] Cuevas A, Allen T, Bullock J, Wan Y, Yan D, Zhang X 2015 Proceedings of the 42nd IEEE Photovoltaic Specialists Conference Los Angeles, USA, June 14-19, 2015 p1
[6] Wrfel P, Wrfel U 2009Physics of Solar Cells: From Basic Principles to Advanced Concepts (New York: John Wiley Sons) pp93-98
[7] Cuevas A, Yan D 2013 IEEE J. Photovolt. 3 916
[8] Wrfel U, Cuevas A, Wrfel P 2015 IEEE J. Photovolt. 5 461
[9] Brendel R, Peibst R 2016 IEEE J. Photovolt. 6 1413
[10] Bivour M, Macco B, Temmler J, Kessels W M M, Hermle M 2016 Energy Procedia 92 443
[11] Yablonovitch E, Gmitter T, Swanson R M, Kwark Y H 1985 Appl. Phys. Lett. 47 1211
[12] Liu Y M, Sun Y, Rockett A 2012 Sol. Energy Mater. Sol. Cells 98 124
[13] Zhao L, Zhou C L, Li H L, Diao H M, Wang W J 2008 Sol. Energy Mater. Sol. Cells 92 673
[14] Hua X, Li Z P, Shen W Z, Xiong G Y, Wang X S, Zhang L J 2012 IEEE Trans. Electron Dev. 59 1227
[15] Islam R, Nazif K N, Saraswat K C 2016 IEEE Trans. Electron Dev. 63 4788
[16] Bullock J, Cuevas A, Allen T, Battaglia C 2014 Appl. Phys. Lett. 105 232109
[17] Battaglia C, Yin X, Zheng M, Sharp I D, Chen T, McDonnell S, Azcatl A, Carraro C, Ma B, Maboudian R, Wallace R M, Javey A 2014 Nano Lett. 14 967
[18] Bullock J, Wan Y, Hettick M, Geissbhler J, Ong A J, Kiriya D, Yan D, Allen T, Peng J, Zhang X, Sutter-Fella C M, de Wolf S, Ballif C, Cuevas A, Javey A 2016 Proceedings of the 43rd IEEE Photovoltaic Specialists Conference Portland, USA, June 5-10, 2016 p0210
[19] Taguchi M, Yano A, Tohoda S, Matsuyama K, Nakamura Y, Nishiwaki T, Fujita K, Maruyama E 2014 IEEE J. Photovolt. 4 96
[20] Battaglia C, Nicols S M D, de Wolf S, Yin X, Zheng M, Ballif C, Javey A 2014 Appl. Phys. Lett. 104 113902
[21] Ghannam M, Shehadah G, Abdulraheem Y, Poortmans J 2014 Proceedings of the 28th European Photovoltaic Solar Energy Conference and Exhibition Paris, France, September 30-October 4, 2014 p822
[22] Rmer U, Peibst R, Ohrdes T, Lim B, Krgener J, Bugiel E, Wietler T, Brendel R 2014 Sol. Energy Mater. Sol. Cells 131 85
[23] Bivour M, Reichel C, Hermle M, Glunz S W 2012 Sol. Energy Mater. Sol. Cells 106 11
[24] Bivour M, Reusch M, Schrer S, Feldmann F, Temmler J, Steinkemper H, Hermle M 2014 IEEE J. Photovolt. 4 566
[25] Bivour M, Temmler J, Steinkemper H, Hermle M 2015 Sol. Energy Mater. Sol. Cells 142 34
[26] Geissbhler J, Werner J, Martin de Nicolas S, Barraud L, Hessler-Wyser A, Despeisse M, Nicolay S, Tomasi A, Niesen B, de Wolf S, Ballif C 2015 Appl. Phys. Lett. 107 081601
[27] Meyer J, Hamwi S, Krger M, Kowalsky W, Riedl T, Kahn A 2012 Adv. Mater. 24 5408
[28] Mcdonnell S, Azcatl A, Addou R, Gong C, Battaglia C, Chuang S, Cho K, Javey A, Wallace R M 2014 ACS Nano 8 6265
[29] Gerling L G, Voz C, Alcubilla R, Puigdollers J 2017 J. Mater. Res. 32 260
[30] Yang X, Zheng P, Bi Q, Weber K 2016 Sol. Energy Mater. Sol. Cells 150 32
[31] Gerling L G, Mahato S, Morales-Vilches A, Masmitja G, Ortega P, Voz C, Alcubilla R, Puigdollers J 2016 Sol. Energy Mater. Sol. Cells 145 109
[32] Almora O, Gerling L G, Voz C, Alcubilla R, Puigdollers J, Garcia-Belmonte G 2017 Sol. Energy Mater. Sol. Cells 168 221
计量
- 文章访问数: 9724
- PDF下载量: 488
- 被引次数: 0