-
应用晶体相场方法研究高温应变下的预熔化晶界位错湮没机理. 结果表明, 原预熔化晶界上的位错在应变作用下发生分离运动, 形成新晶界, 即亚晶界. 该过程的实质是生成了亚晶粒; 亚晶界的迁移过程的本质是亚晶粒长大、吞噬旧晶粒的过程; 亚晶界之间的湮没是亚晶粒完全吞噬旧晶粒过程的结束, 体系转变成为单个晶粒结构. 根据原子密度序参数沿x和y方向的投影值随应变量的变化特征, 可以揭示出高温应变作用下, 预熔化亚晶界相遇湮没的本质是两对极性相反的偶极子位错对发生二次湮没, 该湮没的微观过程是通过位错连续二次滑移湮没而实现的, 其湮没的速率较低温时的湮没速率要小许多.Grain boundary (GB) research is always the most fundamental and active study field in interface science. Grain boundary premelting (GBPM) is induced as a consequence of local inner strain around defects in material at high temperature. When GB premelting is under an external stress, it is referred to as stress induced GBPM (SIGBPM). Owing to the fact that the width of a GB usually is a few atoms thick, it is difficult to observe the GBPM directly in experiment, thus the development of computational simulation experiment can make up for the shortcomings in experiment. For this reason, a new method which is named phase field crystal (PFC) model based on density functional theory is proposed. Because the method can be used to simulate the evolution of macroscopic structure of polycrystalline material on a diffusive time and atomic scale, therefore, PFC has a great advantage in simulating the evolution of microstructure. In this paper, PFC method is used to investigate the annihilation process of dislocation pairs of premelted grain boundary under strain at high temperature. Simulated results show that the essence of separation process of sub-GB (SGB) from original GB is that sub-grain structures are generated. The SGB migration is the process of the new grain swallowing up the old one. The annihilation process of GBPM under applied strain at high temperature can be divided into two stage features. The first stage is the stage of system energy increasing, which is corresponding to the process of SGB migration, dislocation gliding; the second stage is the energy decreasing, which corresponds to the interaction of SGBs and annihilation of dislocations, while the speed of annihilation in this process is slow and the peak of energy curve is wide and smooth. According to the changing process of the atomic density distribution projected along the directions of x and y axis with strain increasing, we can reveal that the nature of annihilation of double dislocation pairs at high temperature is the process of two-step annihilations, of which the detailed process is not easy to observe at low temperature due to its fast annihilating speed of dislocation pairs.
-
Keywords:
- grain boundary splitting /
- dislocation /
- high temperature /
- phase field crystal
[1] Straumal B B, Zieba P, Gust W 2001 Int. J. Inorganic Mater. 3 1113
[2] Straumal B, Kogtenkova O, Protasova S, Mazilkin A, Zieba P, Czeppe T, Wojewoda-Budka J, Faryna M 2008 Mater. Sci. Engin. A 495 126
[3] Luo J 2008 Curr. Opinion Solid State Mater. Sci. 12 81
[4] Alsayed A M, Islam M F, Zhang J, Collings P J, Yodh A G 2005 Science 309 1207
[5] Tallon J L 1978 Nature 276 849
[6] Bartis F J 1977 Nature 268 427
[7] Oxtoby D W 1990 Nature 347 725
[8] Pusey P N 2005 Science 309 1198
[9] Hsieh T E, Balluffi R W 1989 Acta Metall. 37 1637
[10] Lu K, Sheng H W, Jin Z H 1997 Chin. J. Mater. Res. 11 654 (in Chinese) [卢柯, 生红卫, 金朝晖 1997 材料研究学报 11 654]
[11] Chaudron G, Lacombe P, Yannaquis N 1948 Comptes Rendus Hebdomadaires Des Seances De L Academie Des Sciences (Paris) 226 1372
[12] Balluffi R W, Maurer R 1988 Scrip. Metall. 22 709
[13] Divinski S, Lohmann M, Herzig C, Straumal B, Baretzky B, Gust W 2005 Phys. Rev. B 71 104104
[14] Mu J W, Sun S C, Jiang Z H 2013 Chin. Phys. B 22 037303
[15] Wang N, Mokadem S, Rappaz M, Kurz W 2004 Acta Mater. 52 3173
[16] Inoko F, Okada T, Maraga T, Nakano Y, Yoshikawa T 1997 Interf. Sci. 4 263
[17] Inoko F, Hama T, Tagami M, Yoshikawa T 1991 Ultramicroscopy 39 118
[18] Zhang L, Wang S Q, Ye H Q 2004 Acta Phys. Sin. 53 2497 (in Chinese) [张林, 王绍青, 叶恒强 2004 53 2497]
[19] Williams P L, Mishin Y 2009 Acta Mater. 57 3786
[20] Frolov T, Mishin Y 2009 Phys. Rev. B 79 174110
[21] Keblinski P, Phillpot S R, Wolf D, Gleiter H 1997 Acta Mater. 45 987
[22] Besold G, Mouritsen O G 1994 Phys. Rev. B 50 6573
[23] Qi Y, Krajewski P E 2007 Acta Mater. 55 1555
[24] Wang H L, Wang X X, Liang H Y 2005 Acta Phys. Sin. 54 4836 (in Chinese) [王海龙, 王秀喜, 梁海戈 2005 54 4836]
[25] Lobkovsky A E, Warren J A 2002 Physica D 164 202
[26] MishinY, Boettinger W J, Warren J A, McFadden G B 2009 Acta Mater. 57 3771
[27] Elder K R, Katakowski M, Haataja M, Grant M 2002 Phys. Rev. Lett. 88 245701
[28] Elder K R, Grant M 2004 Phys. Rev. E 70 051605
[29] Yu Y M, Backofen R, Voigt A 2011 J. Cryst. Growth 318 18
[30] Elder K R, Rossi G, Kanerva P, Sanches F, Ying S C, Granato E, Achim C V, Ala-Nissila T 2012 Phys. Rev. Lett. 108 226102
[31] Gao Y J, Huang L L, Deng Q Q, Lin K, Huang C G 2014 Front. Mater. Sci. 8 185
[32] Gao Y J, Luo Z R, Huang C G, Lu Q H, Lin K 2013 Acta Phys. Sin. 62 050507 (in Chinese) [高英俊, 罗志荣, 黄创高, 卢强华, 林葵 2013 62 050507]
[33] Greenwood M, Rottler J, Provatas N 2011 Phys. Rev. E 83 031601
[34] Mkhonta S K, Elder K R, Huang Z F 2013 Phys. Rev. Lett. 111 035501
[35] Gao Y J, Luo Z R, Huang L L, Lin K 2013 Chin. J. Nonferrous Metals 23 1892 (in Chinese) [高英俊, 罗志荣, 黄礼琳, 林葵 2013 中国有色金属学报 23 1892]
[36] Yang T, Chen Z, Dong W P 2011 Acta Metall. Sin. 47 1301 (in Chinese) [杨涛, 陈铮, 董卫平 2011 金属学报 47 1301]
[37] Gao Y J, Lu C J, Huang L L, Luo Z R, Huang C G 2014 Acta Metall. Sin. 50 110 (in Chinese) [高英俊, 卢成健, 黄礼琳, 罗志荣, 黄创高 2014 金属学报 50 110]
[38] Gao Y J, Wang J F, Luo Z R, Lu Q H, Liu Y 2013 Chin. J. Computat. Phys. 30 577 (in Chinese) [高英俊, 王江帆, 罗志荣, 卢强华, 刘瑶 2013 计算物理 30 577]
[39] Mellenthin J, Karma A, Plapp M 2008 Phys. Rev. B 78 184110
[40] Gao Y J, Deng Q Q, Quan S L, Zhou W Q, Huang C G 2014 Front. Mater. Sci. 8 176
[41] Hirouchi T, Takaki T, Tomita Y 2009 Computat. Mater. Sci. 44 1192
[42] Takaki T, Tomita Y 2010 Int. J. Mech. Sci. 52 320
[43] Adland A, Karma A, Spatschek R, Buta D, Asta M 2013 Phys. Rev. B 87 024110
[44] Olmsted D L, Buta D, Adland A, Foiles S M, Asta M, Karma A 2011 Phys. Rev. Lett. 106 046101
[45] Spatschek R, Adland A, Karma A 2013 Phys. Rev. B 87 024109
[46] Berry J, Elder K R, Grant M 2008 Phys. Rev.B 77 224114
[47] Spatschek R, Karma A 2010 Phys. Rev. B 81 214201
[48] Lu Y L, Mu H, Hou H X, Chen Z 2013 Acta Metall. Sin. 49 358 (in Chinese) [卢艳丽, 牧虹, 侯华欣, 陈铮 2013 金属学报 49 358]
[49] Gao Y J, Zhou W Q, Luo Z R, Lin K, Huang C G 2014 Acta Metall. Sin. 50 886 (in Chinese) [高英俊, 周文权, 罗志荣, 林葵, 黄创高 2014 金属学报 50 886]
[50] Cheng M, Warren J A 2008 J. Computat. Phys. 227 6241
[51] Gao Y J, Luo Z R, Huang L L, Hu X Y 2012 Acta Metall. Sin. 48 1215 (in Chinese) [高英俊, 罗志荣, 黄礼琳, 胡项英 2012 金属学报 48 1215]
[52] Hirth J P, Pond R C, Lothe J 2006 Acta Mater. 54 4237
[53] Long J, Wang Z Y, Zhao Y L, Long Q H, Yang T, Chen Z 2013 Acta Phys. Sin. 62 218101 (in Chinese) [龙建, 王诏玉, 赵宇龙, 龙清华, 杨涛, 陈铮 2013 62 218101]
[54] Hirth J P, Lothe J 1968 Theory of Dislocations (New York: McGraw-Hill Inc. Press) pp250-350
-
[1] Straumal B B, Zieba P, Gust W 2001 Int. J. Inorganic Mater. 3 1113
[2] Straumal B, Kogtenkova O, Protasova S, Mazilkin A, Zieba P, Czeppe T, Wojewoda-Budka J, Faryna M 2008 Mater. Sci. Engin. A 495 126
[3] Luo J 2008 Curr. Opinion Solid State Mater. Sci. 12 81
[4] Alsayed A M, Islam M F, Zhang J, Collings P J, Yodh A G 2005 Science 309 1207
[5] Tallon J L 1978 Nature 276 849
[6] Bartis F J 1977 Nature 268 427
[7] Oxtoby D W 1990 Nature 347 725
[8] Pusey P N 2005 Science 309 1198
[9] Hsieh T E, Balluffi R W 1989 Acta Metall. 37 1637
[10] Lu K, Sheng H W, Jin Z H 1997 Chin. J. Mater. Res. 11 654 (in Chinese) [卢柯, 生红卫, 金朝晖 1997 材料研究学报 11 654]
[11] Chaudron G, Lacombe P, Yannaquis N 1948 Comptes Rendus Hebdomadaires Des Seances De L Academie Des Sciences (Paris) 226 1372
[12] Balluffi R W, Maurer R 1988 Scrip. Metall. 22 709
[13] Divinski S, Lohmann M, Herzig C, Straumal B, Baretzky B, Gust W 2005 Phys. Rev. B 71 104104
[14] Mu J W, Sun S C, Jiang Z H 2013 Chin. Phys. B 22 037303
[15] Wang N, Mokadem S, Rappaz M, Kurz W 2004 Acta Mater. 52 3173
[16] Inoko F, Okada T, Maraga T, Nakano Y, Yoshikawa T 1997 Interf. Sci. 4 263
[17] Inoko F, Hama T, Tagami M, Yoshikawa T 1991 Ultramicroscopy 39 118
[18] Zhang L, Wang S Q, Ye H Q 2004 Acta Phys. Sin. 53 2497 (in Chinese) [张林, 王绍青, 叶恒强 2004 53 2497]
[19] Williams P L, Mishin Y 2009 Acta Mater. 57 3786
[20] Frolov T, Mishin Y 2009 Phys. Rev. B 79 174110
[21] Keblinski P, Phillpot S R, Wolf D, Gleiter H 1997 Acta Mater. 45 987
[22] Besold G, Mouritsen O G 1994 Phys. Rev. B 50 6573
[23] Qi Y, Krajewski P E 2007 Acta Mater. 55 1555
[24] Wang H L, Wang X X, Liang H Y 2005 Acta Phys. Sin. 54 4836 (in Chinese) [王海龙, 王秀喜, 梁海戈 2005 54 4836]
[25] Lobkovsky A E, Warren J A 2002 Physica D 164 202
[26] MishinY, Boettinger W J, Warren J A, McFadden G B 2009 Acta Mater. 57 3771
[27] Elder K R, Katakowski M, Haataja M, Grant M 2002 Phys. Rev. Lett. 88 245701
[28] Elder K R, Grant M 2004 Phys. Rev. E 70 051605
[29] Yu Y M, Backofen R, Voigt A 2011 J. Cryst. Growth 318 18
[30] Elder K R, Rossi G, Kanerva P, Sanches F, Ying S C, Granato E, Achim C V, Ala-Nissila T 2012 Phys. Rev. Lett. 108 226102
[31] Gao Y J, Huang L L, Deng Q Q, Lin K, Huang C G 2014 Front. Mater. Sci. 8 185
[32] Gao Y J, Luo Z R, Huang C G, Lu Q H, Lin K 2013 Acta Phys. Sin. 62 050507 (in Chinese) [高英俊, 罗志荣, 黄创高, 卢强华, 林葵 2013 62 050507]
[33] Greenwood M, Rottler J, Provatas N 2011 Phys. Rev. E 83 031601
[34] Mkhonta S K, Elder K R, Huang Z F 2013 Phys. Rev. Lett. 111 035501
[35] Gao Y J, Luo Z R, Huang L L, Lin K 2013 Chin. J. Nonferrous Metals 23 1892 (in Chinese) [高英俊, 罗志荣, 黄礼琳, 林葵 2013 中国有色金属学报 23 1892]
[36] Yang T, Chen Z, Dong W P 2011 Acta Metall. Sin. 47 1301 (in Chinese) [杨涛, 陈铮, 董卫平 2011 金属学报 47 1301]
[37] Gao Y J, Lu C J, Huang L L, Luo Z R, Huang C G 2014 Acta Metall. Sin. 50 110 (in Chinese) [高英俊, 卢成健, 黄礼琳, 罗志荣, 黄创高 2014 金属学报 50 110]
[38] Gao Y J, Wang J F, Luo Z R, Lu Q H, Liu Y 2013 Chin. J. Computat. Phys. 30 577 (in Chinese) [高英俊, 王江帆, 罗志荣, 卢强华, 刘瑶 2013 计算物理 30 577]
[39] Mellenthin J, Karma A, Plapp M 2008 Phys. Rev. B 78 184110
[40] Gao Y J, Deng Q Q, Quan S L, Zhou W Q, Huang C G 2014 Front. Mater. Sci. 8 176
[41] Hirouchi T, Takaki T, Tomita Y 2009 Computat. Mater. Sci. 44 1192
[42] Takaki T, Tomita Y 2010 Int. J. Mech. Sci. 52 320
[43] Adland A, Karma A, Spatschek R, Buta D, Asta M 2013 Phys. Rev. B 87 024110
[44] Olmsted D L, Buta D, Adland A, Foiles S M, Asta M, Karma A 2011 Phys. Rev. Lett. 106 046101
[45] Spatschek R, Adland A, Karma A 2013 Phys. Rev. B 87 024109
[46] Berry J, Elder K R, Grant M 2008 Phys. Rev.B 77 224114
[47] Spatschek R, Karma A 2010 Phys. Rev. B 81 214201
[48] Lu Y L, Mu H, Hou H X, Chen Z 2013 Acta Metall. Sin. 49 358 (in Chinese) [卢艳丽, 牧虹, 侯华欣, 陈铮 2013 金属学报 49 358]
[49] Gao Y J, Zhou W Q, Luo Z R, Lin K, Huang C G 2014 Acta Metall. Sin. 50 886 (in Chinese) [高英俊, 周文权, 罗志荣, 林葵, 黄创高 2014 金属学报 50 886]
[50] Cheng M, Warren J A 2008 J. Computat. Phys. 227 6241
[51] Gao Y J, Luo Z R, Huang L L, Hu X Y 2012 Acta Metall. Sin. 48 1215 (in Chinese) [高英俊, 罗志荣, 黄礼琳, 胡项英 2012 金属学报 48 1215]
[52] Hirth J P, Pond R C, Lothe J 2006 Acta Mater. 54 4237
[53] Long J, Wang Z Y, Zhao Y L, Long Q H, Yang T, Chen Z 2013 Acta Phys. Sin. 62 218101 (in Chinese) [龙建, 王诏玉, 赵宇龙, 龙清华, 杨涛, 陈铮 2013 62 218101]
[54] Hirth J P, Lothe J 1968 Theory of Dislocations (New York: McGraw-Hill Inc. Press) pp250-350
计量
- 文章访问数: 6884
- PDF下载量: 228
- 被引次数: 0