Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Phase-field crystal modelling the nucleation processes of graphene structures on different substrates

Gu Ji-Wei Wang Jin-Cheng Wang Zhi-Jun Li Jun-Jie Guo Can Tang Sai

Citation:

Phase-field crystal modelling the nucleation processes of graphene structures on different substrates

Gu Ji-Wei, Wang Jin-Cheng, Wang Zhi-Jun, Li Jun-Jie, Guo Can, Tang Sai
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Two-dimensional materials with unique and excellent physical and chemical properties have attracted much attention in recent years. Among the two-dimensional materials, graphene or grapheme-like materials with honeycomb structure can be mainly prepared by the chemical vapor deposition (CVD) method. The key of this method is to select the substrates and control the nucleation and growth process of honeycomb structures. Graphene prepared by CVD contains many structure defects and grain boundaries, which mainly arise from nucleation process. However, the nucleation mechanism of graphene prepared by CVD method is not very clear. In addition, more than ten kinds of metal substrates can be used as substrate materials in CVD methods, such as Cu and Ni, which have nearly always face-centered cubic (FCC) structures and similar functions in the preparation process. In order to better describe the nucleation of graphene and understand the influences of metal substrates, we introduce the structural order parameter into the three-mode phase-field crystal model to distinguish the low-density gas phase from condensed phases. Nucleation processes of graphene on substrates with different symmetries are studied at an atomic scale by using the three-mode phase-field crystal model, which can simulate transitions between highly correlated condensed phases and low-density vapor phases. Simulation results indicate that no matter whether there is a substrate in the nucleation process, firstly gaseous atoms gather to form amorphous transitional clusters, and then amorphous transitional clusters gradually transform into ordered graphene crystals, with continuous accumulation of new gaseous atoms and position adjustment of atoms. In the nucleation process, five membered ring structures act as a transitional function. When grown on the substrate with a good geometric match with the honeycomb lattice, such as (111) plane of FCC metals, the graphene island has small structural defects. However, when grown without a substrate or on the substrate with a bad geometric match, such as (100) plane of FCC metals, the graphene island contains many structural defects and grain boundaries, which are not conducive to the preparation of high quality graphene. Compared with the (100) crystal plane of the tetragonal cell, the (110) crystal plane of the rectangular cell is favorable for the preparation of graphene single crystals with less defects. Therefore, the appropriate metal substrate can promote the nucleation process of graphene and reduce the formation of distortions and defects during the nucleation and growth of graphene.
      Corresponding author: Wang Jin-Cheng, jchwang@nwpu.edu.cn;s.tang@mpie.de ; Tang Sai, jchwang@nwpu.edu.cn;s.tang@mpie.de
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51571165, 51371151).
    [1]

    Somani P R, Somani S P, Umeno M 2006 Chem. Phys. Lett. 430 56

    [2]

    Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L, Ruoff R S 2009 Science 324 1312

    [3]

    Chen H, Zhu W, Zhang Z 2010 Phys. Rev. Lett. 104 186101

    [4]

    Wu P, Zhang W, Li Z, Yang J, Hou J G 2010 J. Chem. Phys. 133 183

    [5]

    Loginova E, Bartelt N C, Feibelman P J, McCarty K F 2008 New J. Phys. 10 093026

    [6]

    Loginova E, Bartelt N C, Feibelman P J, Mccarty K F 2009 New J. Phys. 11 063046

    [7]

    Elder K R, Katakowski M, Haataja M, Grant M 2002 Phys. Rev. Lett. 88 245701

    [8]

    Elder K R, Grant M 2004 Phys. Rev. E 70 051605

    [9]

    Backofen R, Rtz A, Voigt A 2007 Philos. Mag. Lett. 87 813

    [10]

    Tegze G, Tth G I, Grnsy L 2011 Phys. Rev. Lett. 106 195502

    [11]

    Guo Y L, Wang J C, Wang Z J, Tang S, Zhou Y L 2012 Acta Phys. Sin. 61 146401 (in Chinese) [郭耀麟, 王锦程, 王志军, 唐赛, 周尧和 2012 61 146401]

    [12]

    Greenwood M, Provatas N, Rottler J 2010 Phys. Rev. Lett. 105 045702

    [13]

    Greenwood M, Oforiopoku N, Rottler J, Provatas N 2011 Phys. Rev. B 84 064104

    [14]

    Guo C, Wang J C, Li J J, Wang Z J, Tang S 2016 J. Phys. Chem. Lett. 7 5008

    [15]

    Guo C, Wang J C, Wang Z J, Li J J, Guo Y L, Huang Y H 2016 Soft Matter 12 4666

    [16]

    Schwalbach E J, Warren J A, Wu K A, Voorhees P W 2013 Phys. Rev. E 88 023306

    [17]

    Mkhonta S K, Elder K R, Huang Z F 2013 Phys. Rev. Lett. 111 035501

    [18]

    Tang S, Bakofen R, Voigt A https://tu-dresden de/mn/ math/wir/forschung/forschungsprojekte/cosima_ simulation_von_rt_cvd_text [2017-5-25]

    [19]

    Steinhardt P J, Nelson D R, Ronchetti M 1983 Phys. Rev. B 28 784

    [20]

    ten Wolde P R, Ruizmontero M J, Frenkel D 1995 Phys. Rev. Lett. 75 2714

    [21]

    Luo Z, Kim S, Kawamoto N, Rappe A M, Johnson A T 2011 ACS Nano 5 9154

    [22]

    Yu Q, Jauregui L A, Wu W, Colby R, Tian J, Su Z, Cao H, Liu Z, Pandey D, Wei D, Chung T F, Peng P, Guisinger N P, Stach E A, Bao J, Pei S S, Chen Y P 2011 Nat. Mater. 10 443

    [23]

    Gao J, Yuan Q, Hu H, Zhao J, Ding F 2011 J. Phys. Chem. C 115 17695

    [24]

    Gao J, Yip J, Zhao J, Yakobson B I, Ding F 2011 J. Am. Chem. Soc. 133 5009

    [25]

    Wang Y, Page A J, Nishimoto Y, Qian H J, Morokuma K, Irle S 2011 J. Am. Chem. Soc. 133 18837

    [26]

    Rasool H I, Song E B, Mecklenburg M, Regan B C, Wang K L, Weiller B H, Gimzewski J K 2011 J. Am. Chem. Soc. 133 12536

  • [1]

    Somani P R, Somani S P, Umeno M 2006 Chem. Phys. Lett. 430 56

    [2]

    Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L, Ruoff R S 2009 Science 324 1312

    [3]

    Chen H, Zhu W, Zhang Z 2010 Phys. Rev. Lett. 104 186101

    [4]

    Wu P, Zhang W, Li Z, Yang J, Hou J G 2010 J. Chem. Phys. 133 183

    [5]

    Loginova E, Bartelt N C, Feibelman P J, McCarty K F 2008 New J. Phys. 10 093026

    [6]

    Loginova E, Bartelt N C, Feibelman P J, Mccarty K F 2009 New J. Phys. 11 063046

    [7]

    Elder K R, Katakowski M, Haataja M, Grant M 2002 Phys. Rev. Lett. 88 245701

    [8]

    Elder K R, Grant M 2004 Phys. Rev. E 70 051605

    [9]

    Backofen R, Rtz A, Voigt A 2007 Philos. Mag. Lett. 87 813

    [10]

    Tegze G, Tth G I, Grnsy L 2011 Phys. Rev. Lett. 106 195502

    [11]

    Guo Y L, Wang J C, Wang Z J, Tang S, Zhou Y L 2012 Acta Phys. Sin. 61 146401 (in Chinese) [郭耀麟, 王锦程, 王志军, 唐赛, 周尧和 2012 61 146401]

    [12]

    Greenwood M, Provatas N, Rottler J 2010 Phys. Rev. Lett. 105 045702

    [13]

    Greenwood M, Oforiopoku N, Rottler J, Provatas N 2011 Phys. Rev. B 84 064104

    [14]

    Guo C, Wang J C, Li J J, Wang Z J, Tang S 2016 J. Phys. Chem. Lett. 7 5008

    [15]

    Guo C, Wang J C, Wang Z J, Li J J, Guo Y L, Huang Y H 2016 Soft Matter 12 4666

    [16]

    Schwalbach E J, Warren J A, Wu K A, Voorhees P W 2013 Phys. Rev. E 88 023306

    [17]

    Mkhonta S K, Elder K R, Huang Z F 2013 Phys. Rev. Lett. 111 035501

    [18]

    Tang S, Bakofen R, Voigt A https://tu-dresden de/mn/ math/wir/forschung/forschungsprojekte/cosima_ simulation_von_rt_cvd_text [2017-5-25]

    [19]

    Steinhardt P J, Nelson D R, Ronchetti M 1983 Phys. Rev. B 28 784

    [20]

    ten Wolde P R, Ruizmontero M J, Frenkel D 1995 Phys. Rev. Lett. 75 2714

    [21]

    Luo Z, Kim S, Kawamoto N, Rappe A M, Johnson A T 2011 ACS Nano 5 9154

    [22]

    Yu Q, Jauregui L A, Wu W, Colby R, Tian J, Su Z, Cao H, Liu Z, Pandey D, Wei D, Chung T F, Peng P, Guisinger N P, Stach E A, Bao J, Pei S S, Chen Y P 2011 Nat. Mater. 10 443

    [23]

    Gao J, Yuan Q, Hu H, Zhao J, Ding F 2011 J. Phys. Chem. C 115 17695

    [24]

    Gao J, Yip J, Zhao J, Yakobson B I, Ding F 2011 J. Am. Chem. Soc. 133 5009

    [25]

    Wang Y, Page A J, Nishimoto Y, Qian H J, Morokuma K, Irle S 2011 J. Am. Chem. Soc. 133 18837

    [26]

    Rasool H I, Song E B, Mecklenburg M, Regan B C, Wang K L, Weiller B H, Gimzewski J K 2011 J. Am. Chem. Soc. 133 12536

  • [1] Zhang Yi-Fei, Liu Yuan, Mei Jia-Dong, Wang Jun-Zhuan, Wang Xiao-Mu, Shi Yi. Quaternary nanoparticle array antenna for graphene/silicon near-infrared detector. Acta Physica Sinica, 2024, 73(6): 064202. doi: 10.7498/aps.73.20231657
    [2] Gao Feng, Li Huan-Qing, Song Zhuo, Zhao Yu-Hong. The Evolution of Grain Boundary Dislocations in Graphene Induced by Strain: Three-Mode Phase-Field Crystal Method. Acta Physica Sinica, 2024, 73(24): . doi: 10.7498/aps.73.20241368
    [3] Zheng Qin-Ren, Zhan Fu-Zhi, She Jun-Yi, Wang Jian-Yu, Shi Ruo-Li, Meng Guo-Dong. Influence of morphological characteristics of graphene on its field emission properties. Acta Physica Sinica, 2024, 73(8): 086101. doi: 10.7498/aps.73.20231784
    [4] Zhan Zhen, Zhang Ya-Lei, Yuan Sheng-Jun. Lattice relaxation and substrate effects of graphene moiré superlattice. Acta Physica Sinica, 2022, 71(18): 187302. doi: 10.7498/aps.71.20220872
    [5] Guo Can, Kang Chen-Rui, Gao Ying, Zhang Yi-Chi, Deng Ying-Yuan, Ma Chao, Xu Chun-Jie, Liang Shu-Hua. A phase-field model for in-situ reaction process of metal-matrix composite materials. Acta Physica Sinica, 2022, 71(9): 096401. doi: 10.7498/aps.71.20211737
    [6] Guo Xiao-Meng, Qing Fang-Zhu, Li Xue-Song. Applications of graphene in anti-corrosion of metal surface. Acta Physica Sinica, 2021, 70(9): 098102. doi: 10.7498/aps.70.20210349
    [7] Wang Xiao-Yu, Bi Wei-Hong, Cui Yong-Zhao, Fu Guang-Wei, Fu Xing-Hu, Jin Wa, Wang Ying. Synthesis of photonic crystal fiber based on graphene directly grown on air-hole by chemical vapor deposition. Acta Physica Sinica, 2020, 69(19): 194202. doi: 10.7498/aps.69.20200750
    [8] Jiang Xiao-Wei, Wu Hua, Yuan Shou-Cai. Enhancement of graphene three-channel optical absorption based on metal grating. Acta Physica Sinica, 2019, 68(13): 138101. doi: 10.7498/aps.68.20182173
    [9] Wang Tian-Hui, Li Ang, Han Bai. First-principles study of graphyne/graphene heterostructure resonant tunneling nano-transistors. Acta Physica Sinica, 2019, 68(18): 187102. doi: 10.7498/aps.68.20190859
    [10] Zhang Xiao-Bo, Qing Fang-Zhu, Li Xue-Song. Clean transfer of chemical vapor deposition graphene film. Acta Physica Sinica, 2019, 68(9): 096801. doi: 10.7498/aps.68.20190279
    [11] Gao Jian, Sang Tian, Li Jun-Lang, Wang La. Double-channel absorption enhancement of graphene using narrow groove metal grating. Acta Physica Sinica, 2018, 67(18): 184210. doi: 10.7498/aps.67.20180848
    [12] Chen Hao, Zhang Xiao-Xia, Wang Hong, Ji Yue-Hua. Near-infrared absorption of graphene-metal nanostructure based on magnetic polaritons. Acta Physica Sinica, 2018, 67(11): 118101. doi: 10.7498/aps.67.20180196
    [13] Chen Cai-Yun, Liu Jin-Xing, Zhang Xiao-Min, Li Jin-Long, Ren Ling-Ling, Dong Guo-Cai. Coverage measurement of graphene film on metallic substrate using scanning electron microscopy. Acta Physica Sinica, 2018, 67(7): 076802. doi: 10.7498/aps.67.20172654
    [14] Guo Hui, Lu Hong-Liang, Huang Li, Wang Xue-Yan, Lin Xiao, Wang Ye-Liang, Du Shi-Xuan, Gao Hong-Jun. Intercalation and its mechanism of high quality large area graphene on metal substrate. Acta Physica Sinica, 2017, 66(21): 216803. doi: 10.7498/aps.66.216803
    [15] Xie Ling-Yun, Xiao Wen-Bo, Huang Guo-Qing, Hu Ai-Rong, Liu Jiang-Tao. Terahertz absorption of graphene enhanced by one-dimensional photonic crystal. Acta Physica Sinica, 2014, 63(5): 057803. doi: 10.7498/aps.63.057803
    [16] Wang Lang, Feng Wei, Yang Lian-Qiao, Zhang Jian-Hua. The pre-treatment of copper for graphene synthesis. Acta Physica Sinica, 2014, 63(17): 176801. doi: 10.7498/aps.63.176801
    [17] Yu Hai-Ling, Zhu Jia-Qi, Cao Wen-Xin, Han Jie-Cai. Process in preparation of metal-catalyzed graphene. Acta Physica Sinica, 2013, 62(2): 028201. doi: 10.7498/aps.62.028201
    [18] Zhang Xian-Gang, Zong Ya-Ping, Wu Yan. A model for releasing of stored energy and microstructure evolution during recrystallization by phase-field simulation. Acta Physica Sinica, 2012, 61(8): 088104. doi: 10.7498/aps.61.088104
    [19] Guo Yao-Lin, Wang Jin-Cheng, Wang Zhi-Jun, Tang Sai, Zhou Yao-He. Phase field crystal model for the effect of colored noise on homogenerous nucleation. Acta Physica Sinica, 2012, 61(14): 146401. doi: 10.7498/aps.61.146401
    [20] Zhang Hua-Wei, Li Yan-Xiang. Study on bubble nucleation in liquid metal. Acta Physica Sinica, 2007, 56(8): 4864-4871. doi: 10.7498/aps.56.4864
Metrics
  • Abstract views:  6477
  • PDF Downloads:  528
  • Cited By: 0
Publishing process
  • Received Date:  26 May 2017
  • Accepted Date:  05 July 2017
  • Published Online:  05 November 2017

/

返回文章
返回
Baidu
map