-
Phase field crystal method is used to investigate the deformation process and mechanism of twined structure of a trigonal phase under uniaxial tensile deformation, and the evolution and corresponding micro-mechanism of low-angle symmetric and asymmetric grain boundaries (GB) as well as high-angle symmetric and asymmetric GB during deformation process are analyzed in detail. The deformation is performed under the condition that the direction of applied stress is parallel to that of initial GB. Results show that low-angle symmetric GB is composed of two kinds of edge dislocations with the angle made by Burgers vectors being around 60 During deformation, two kinds of dislocations in low-angle symmetric GB move along two opposite directions, then meet with the same kind of dislocation emitted from another GB leading to the annihilation of partial dislocations. As to the low-angle asymmetric GB, its only one kind of dislocation first climbs and moves along the horizontal direction of the applied stress, then each dislocation will break down into two dislocations with their Burgers vectors making an angle about 120, finally a perfect single crystal is formed via the movement and annihilation of dislocations. High-angle GBs first keep horizontal shape under the applied stress, then become serrated, and the dislocations are emitted from the cusps in GBs. Finally, the high-angle asymmetric GB will decompose with the movement and annihilation of dislocation, while the shape of high-angle symmetric GB becomes horizontal again. It can be seen that the high-angle symmetric GB is more stable than the high-angle asymmetric GB; this is in agreement with the results of experiments and molecular dynamics.
-
Keywords:
- phase field crystal /
- twin crystal /
- grain boundary /
- symmetry
[1] Hamilton J C, Siegel D J, Daruka I, Leonard F 2003 Phys. Rev. Lett. 90 246102
[2] Sutton A P, Balluffi R W 1995 Interfaces in Crystalline Materials (Oxford: Clarendon Press)
[3] Medlin D L, Foiles S M, Cohen D 2001 Acta Mater. 49 3689
[4] Marquis E A, Hamilton J C, Medlin D L, Léonard F 2004 Phys. Rev. Lett. 93 156101
[5] Randle V 1996 The Role of the Coincident Site Lattice in Grain Boundary Engineering (Cambridge: Cambridge University Press)
[6] Zhang L, Wang S Q, Ye H Q 2004 Acta Phys. Sin. 53 2497 (in Chinese) [张林, 王绍青, 叶恒强 2004 53 2497]
[7] Wen Y H, Zhu T, Cao L X, Wang C Y 2003 Acta Phys. Sin. 52 2520 (in Chinese) [文玉华, 朱弢, 曹立霞, 王崇愚 2003 52 2520]
[8] Sun W, Chang M, Yang B H 1998 Acta Phys. Sin. 47 0591 (in Chinese) [孙伟, 常明, 杨保和 1998 47 0591]
[9] Stefanovic P, Haataja M, Provatas N 2009 Phys. Rev. E 80 046107
[10] Wen Y L, Chun X, Bo W X, Fang L G 2008 Chin. Phys. B 17 1078
[11] Li J J, Wang J C, Yang G C 2008 Chin. Phys. B 17 3516
[12] Zhang Y X, Wang J C, Yang Y J, Yang G C, Zhou Y H 2008 Chin. Phys. B 17 3523
[13] Moelans N, Blanpain B, Wollants P 2008 Calphad 32 268
[14] Zaeem M A, Kadiri H E, Wang P T, Horstemeyer M F 2011 Comp. Mater. Sci. 50 2488
[15] Moelans N, Blanpain B, Wollants P 2008 Phys. Rev. B 78 024113
[16] Elder K R, Katakowski M, Haataja M, Grant M 2002 Phys. Rev. Lett. 88 245701
[17] Elder K L, Grant M 2004 Phys. Rev. E 70 051605
[18] Ren X, Wang J C, Yang Y J, Yang G C 2010 Acta Phys. Sin. 59 3595 (in Chinese) [任秀, 王锦程, 杨玉娟, 杨根仓 2010 59 3595]
[19] Yang T, Chen Z, Dong W P 2011 Acta Metall. Sin. 47 1301 (in Chinese) [杨涛, 陈铮, 董卫平 2011 金属学报 47 1301]
[20] Hirouchi T, Takaki T, Tomita Y 2010 Int. J. Mech. Sci. 52 309
[21] Hirouchi T, Takaki T, Tomita Y 2009 Comp. Mater. Sci. 44 1192
[22] Xu Y N 2012 Fundamentals of Materials Science (Beijing: Higher Education Press) p439 (in Chinese) [徐永宁 2012 材料科学基础 (北京: 高等教育出版社) 第439页]
[23] Shimokawa T, Kinari T, Shintaku S 2007 Phys. Rev. B 75 144108
[24] Tschopp M A, McDowell D L 2007 Phil. Mag. 87 3147
-
[1] Hamilton J C, Siegel D J, Daruka I, Leonard F 2003 Phys. Rev. Lett. 90 246102
[2] Sutton A P, Balluffi R W 1995 Interfaces in Crystalline Materials (Oxford: Clarendon Press)
[3] Medlin D L, Foiles S M, Cohen D 2001 Acta Mater. 49 3689
[4] Marquis E A, Hamilton J C, Medlin D L, Léonard F 2004 Phys. Rev. Lett. 93 156101
[5] Randle V 1996 The Role of the Coincident Site Lattice in Grain Boundary Engineering (Cambridge: Cambridge University Press)
[6] Zhang L, Wang S Q, Ye H Q 2004 Acta Phys. Sin. 53 2497 (in Chinese) [张林, 王绍青, 叶恒强 2004 53 2497]
[7] Wen Y H, Zhu T, Cao L X, Wang C Y 2003 Acta Phys. Sin. 52 2520 (in Chinese) [文玉华, 朱弢, 曹立霞, 王崇愚 2003 52 2520]
[8] Sun W, Chang M, Yang B H 1998 Acta Phys. Sin. 47 0591 (in Chinese) [孙伟, 常明, 杨保和 1998 47 0591]
[9] Stefanovic P, Haataja M, Provatas N 2009 Phys. Rev. E 80 046107
[10] Wen Y L, Chun X, Bo W X, Fang L G 2008 Chin. Phys. B 17 1078
[11] Li J J, Wang J C, Yang G C 2008 Chin. Phys. B 17 3516
[12] Zhang Y X, Wang J C, Yang Y J, Yang G C, Zhou Y H 2008 Chin. Phys. B 17 3523
[13] Moelans N, Blanpain B, Wollants P 2008 Calphad 32 268
[14] Zaeem M A, Kadiri H E, Wang P T, Horstemeyer M F 2011 Comp. Mater. Sci. 50 2488
[15] Moelans N, Blanpain B, Wollants P 2008 Phys. Rev. B 78 024113
[16] Elder K R, Katakowski M, Haataja M, Grant M 2002 Phys. Rev. Lett. 88 245701
[17] Elder K L, Grant M 2004 Phys. Rev. E 70 051605
[18] Ren X, Wang J C, Yang Y J, Yang G C 2010 Acta Phys. Sin. 59 3595 (in Chinese) [任秀, 王锦程, 杨玉娟, 杨根仓 2010 59 3595]
[19] Yang T, Chen Z, Dong W P 2011 Acta Metall. Sin. 47 1301 (in Chinese) [杨涛, 陈铮, 董卫平 2011 金属学报 47 1301]
[20] Hirouchi T, Takaki T, Tomita Y 2010 Int. J. Mech. Sci. 52 309
[21] Hirouchi T, Takaki T, Tomita Y 2009 Comp. Mater. Sci. 44 1192
[22] Xu Y N 2012 Fundamentals of Materials Science (Beijing: Higher Education Press) p439 (in Chinese) [徐永宁 2012 材料科学基础 (北京: 高等教育出版社) 第439页]
[23] Shimokawa T, Kinari T, Shintaku S 2007 Phys. Rev. B 75 144108
[24] Tschopp M A, McDowell D L 2007 Phil. Mag. 87 3147
Catalog
Metrics
- Abstract views: 6781
- PDF Downloads: 461
- Cited By: 0