Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Constructing micro/nano-photonics barcodes based on micro-region upconversion emission spectrum of single core-shell microcrystal

Gao Wei Zhang Zheng-Yu Zhang Jing-Lei Ding Peng Han Qing-Yan Zhang Cheng-Yun Yan Xue-Wen Dong Jun

Citation:

Constructing micro/nano-photonics barcodes based on micro-region upconversion emission spectrum of single core-shell microcrystal

Gao Wei, Zhang Zheng-Yu, Zhang Jing-Lei, Ding Peng, Han Qing-Yan, Zhang Cheng-Yun, Yan Xue-Wen, Dong Jun
cstr: 32037.14.aps.73.20241015
PDF
HTML
Get Citation
  • The construction of core-shell structures with different structural properties based on the epitaxial growth technique has become an effective technique for regulating the luminescence properties of micro/nanocrystals. In order to obtain richer spectral information, NaYF4:50%Yb3+/2%Tm3+@NaYF4@NaYF4:20%Yb3+/2%Er3+@NaYF4@NaYbF4:2%Er3+ multilayered core-shell microcrystals are prepared by using multiple epitaxial growth through introducing surface modifiers and controlling their reaction conditions. The XRD and SEM results clearly show that the core-shell microcrystals possess a pure hexagonal crystal structure in the form of a disk. The microdesk has a thickness of about 2.32 μm and a diameter of about 28.31 μm. The upconversion luminescence characteristics of different single microcrystal structures are investigated by a confocal microspectroscopy system. In order to realize the selective excitation and emission of a single microcrystal, the spatial distribution of luminescent ions can be controlled through introducing an intermediate isolation layer. Under 980 nm laser excitation, different excitation sites of the single microdisk exhibit different upconversion emission characteristics. The significant blue (450 and 475 nm), red (648 nm) and green (524 and 540 nm) emissions are observed, which mainly originat from Tm3+ and Er3+ radiative transitions. Meanwhile, the red and blue upconversion emission intensities of the microcrystals are improved by using various shell layers. In addition, the luminescence and energy-transfer features of single microcrystals are explored by changing the excitation position. The experimental results demonstrate that the incorporation of NaYF4 inert shells between luminescent layers can regulate luminescence and prevent ions from interacting. By utilizing the spectral fingerprint data of dopant ions in various shell layers, we create customizable micro-nano photonic barcodes and employ them for optical anti-counterfeiting detection. This study explores the use of constructed core-shell structures with luminescent tunable micron core-shell structures to acquire diverse spectral information and maintain stability through their structural properties. Thus, this core-shell structure provides a novel method for using upconversion luminescent microcrystals into micro- and nanophotonics to achieve anti-counterfeiting and display purposes.
      Corresponding author: Gao Wei, gaowei@xupt.edu.cn ; Dong Jun, dongjun@xupt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12274341), the Shaanxi Provincial Basic Science Research Project, China (Grant No. 23JSY007), the Key R & D Plan of Shaanxi Province, China (Grant No. 2023-YBGY-256), the Natural Science Foundation of Shaanxi Province, China (Grant No. 2022JZ-05), the Youth Program of the Natural Science Foundation of Shaanxi Province, China (Grant No. 2022JQ-041), the Education Department Service Local Special Program of Shaanxi Province, China (Grant No. 22JC-057), and the Xi’an University Talents Service Enterprise Project, China (Grant No. 23GXFW0089).
    [1]

    Sun L D, Wang Y F, Yan C H 2014 Acc. Chem. Res. 47 1001Google Scholar

    [2]

    Himmelstoß S F, Hirsch T 2019 Part. Part. Syst. Char. 36 1900235Google Scholar

    [3]

    Hu Y, Yang Y M, Zhang X F, Wang X, Li X X, Li Y Q, Li T Y, Zhang H W 2020 J. Phys. Chem. C 124 24940Google Scholar

    [4]

    Han Q Y, Zhao B C, Gao W, Li Y X, Sun Z Y, Wang C, Chen Y, Wang Y K, Yan X W, Dong J 2022 Phys. Chem. Chem. Phys. 24 13730.Google Scholar

    [5]

    Zhu X Y, Zhong H X, Zhang F 2023 Acc. Mater. Res. 4 536Google Scholar

    [6]

    Zhang C Y, Yin Q X, Ge S K, Qi J X, Han Q Y, Gao W, Wang Y K, Zhang M D, Dong J 2024 Mater. Res. Bull. 176 112801Google Scholar

    [7]

    Patnam H, Hussain S K, Yu J S 2023 Ceram. Int. 49 2967Google Scholar

    [8]

    Ding M Y, Dong B, Lu Y, Yang X F, Yuan Y J, Bai W F, Wu S T, Ji Z G, Lu C H, Zhang K, Zeng H B 2020 Adv. Mater. 32 2002121Google Scholar

    [9]

    Zhou X Q, Ning L X, Qiao J W, Zhao Y F, Xiong P X, Xia Z G 2022 Nat. Commun. 13 7589Google Scholar

    [10]

    Yao Y N, Gao Z H, Lv Y C, Lin X Q, Liu Y Y, Du Y X, Hu F Q, Zhao Y S 2019 Angew. Chem. Int. Ed. 131 13941Google Scholar

    [11]

    Chen J B, Li M S, Sun R R, Xie Y, Reimers J R, Sun L N 2024 Adv. Funct. Mater. 34 2315276Google Scholar

    [12]

    Ying W T, Nie J H, Fan X M, Xu S Q, Gu J M, Liu S M 2021 Adv. Opt. Mater. 9 2100197Google Scholar

    [13]

    Zheng B Z, Fan J Y, Chen B, Qin X, Wang J, Wang F, Deng R R, Liu X G 2022 Chem. Rev. 122 5519Google Scholar

    [14]

    Fan Y, Liu L, Zhang F 2019 Nano Today 25 68Google Scholar

    [15]

    Han Y D, Li H Y, Wang Y B, Pan Y, Huang L, Song F, Huang W 2017 Sci. Rep. 7 1320Google Scholar

    [16]

    Gao W, Zhang J J, Han S S, Xing Y, Shao L, Chen B H, Han Q Y, Yan X W, Zhang C Y, Dong J 2022 Acta Phys. Sin. 71 234206 (in Chinses) [高伟, 张晶晶, 韩珊珊, 邢宇, 邵琳, 陈斌辉, 韩庆艳, 严学文, 张成云, 董军 2022 71 234206]Google Scholar

    Gao W, Zhang J J, Han S S, Xing Y, Shao L, Chen B H, Han Q Y, Yan X W, Zhang C Y, Dong J 2022 Acta Phys. Sin. 71 234206 (in Chinses)Google Scholar

    [17]

    Gao W, Shao L, Han S S, Xing Y, Zhang J J, Chen B H, Han Q Y, Yan X W, Zhang C Y, Dong J 2023 Acta Phys. Sin. 72 024207 (in Chinses) [高伟, 邵琳, 韩珊珊, 邢宇, 张晶晶, 陈斌辉, 韩庆艳, 严学文, 张成云, 董军 2023 72 024207]Google Scholar

    Gao W, Shao L, Han S S, Xing Y, Zhang J J, Chen B H, Han Q Y, Yan X W, Zhang C Y, Dong J 2023 Acta Phys. Sin. 72 024207 (in Chinses)Google Scholar

    [18]

    He E J, Yu J J, Wang C, Jiang Y, Zuo X Z, Xu B, Wen J, Qin Y F, Wang Z J 2020 Mater. Res. Bull. 121 110613Google Scholar

    [19]

    Yang D D, Peng Z X, Guo X, Qiao S Q, Zhao P, Zhan Q Q, Qiu J R, Yang Z M, Dong G P 2021 Adv. Opt. Mater. 9 2100044Google Scholar

    [20]

    Jin L M, Chen X, Siu C K, Wang F, Yu S F 2017 ACS Nano 11 843Google Scholar

    [21]

    Zhou Z Q, Xue J B, Zhang B P, Wang C, Yang X C, Fan WF, Ying L Y, Zheng Z W, Xie Y J, Wu Y F, Yang X D, Zhang D 2021 Appl. Phys. Lett. 118 173301Google Scholar

    [22]

    Gao W, Sun Z Y, Guo L C, Han S S, Chen B H, Han Q Y, Yan X W, Wang Y K, Liu J H, Dong J 2022 Acta Phys. Sin. 71 034207 (in Chinses) [高伟, 孙泽煜, 郭立淳, 韩珊珊, 陈斌辉, 韩庆艳, 严学文, 王勇凯, 刘继红, 董军 2022 71 034207]Google Scholar

    Gao W, Sun Z Y, Guo L C, Han S S, Chen B H, Han Q Y, Yan X W, Wang Y K, Liu J H, Dong J 2022 Acta Phys. Sin. 71 034207 (in Chinses)Google Scholar

    [23]

    Wu W W, Chen D Q, Zhou Y, Wang Z Y, Ji Z G 2016 J. Alloys Compd. 682 275Google Scholar

    [24]

    Sun J, Zhang Z H, Zhao H F, Jiang H 2016 Chin. J. Lumin. 37 526 (in Chinses) [苏俊, 张振华, 赵会峰, 姜宏 2016 发光学报 37 526]Google Scholar

    Sun J, Zhang Z H, Zhao H F, Jiang H 2016 Chin. J. Lumin. 37 526 (in Chinses)Google Scholar

    [25]

    Lüthi S R, Pollnau M, Güdel H U, Hehlen M P 1999 Phys. Rev. B 60 162Google Scholar

    [26]

    Sun T Y, Li Y H, Ho W L, Zhu Q, Chen X, Jin L M, Zhu H M, Huang B L, Lin J, Little B E, Chu S T, Wang F 2019 Nat. Commun. 10 1811Google Scholar

    [27]

    Bai X, Song H W, Pan G H, Lei Y Q, Wang T, Ren X G, Lu S Z, Dong B, Dai Q L, Fan L B 2007 J. Phys. Chem. C 111 13611Google Scholar

    [28]

    Mehrdel B, Nikbakht A, Aziz A A, Jameel M S, Dheyab M A, Khaniabadi P M 2022 Nanotechnology 33 082001Google Scholar

    [29]

    Yan X W, Zhang J L, Zhang Z Y, Ding P, Han Q Y, Zhang C Y, Gao W, Dong J 2024 Acta Phys. Sin. 73 054206 (in Chinses) [严学文, 张景蕾, 张正宇, 丁鹏, 韩庆艳, 张成云, 高伟, 董军 2024 73 054206]Google Scholar

    Yan X W, Zhang J L, Zhang Z Y, Ding P, Han Q Y, Zhang C Y, Gao W, Dong J 2024 Acta Phys. Sin. 73 054206 (in Chinses)Google Scholar

    [30]

    Lee C, Park H, Kim W, Park S 2019 Phys. Chem. Chem. Phys. 21 24026Google Scholar

    [31]

    Lin H, Xu D K, Cheng Z Y, Li Y j, Xu L Q, Ma Y, Yang H S, Zhang Y L 2020 Appl. Surf. Sci. 514 146074Google Scholar

    [32]

    Fan X M, Nie J H, Ying W T, Xu S Q, Gu J M, Liu S M 2021 Dalton Trans. 50 12234Google Scholar

    [33]

    Gao Z H, Yang S, Xu B Y, Zhang T J, Chen S W, Zhang W G, Sun X, Wang Z F, Wang X, Meng X G, Zhao Y S 2021 Angew. Chem. Int. Ed. 60 24519Google Scholar

  • 图 1  (a) NaYF4:50%Yb3+/2%Tm3+及其包覆不同壳层后微米核壳晶体的XRD图谱; (b)—(f) 相应微米晶体及其核壳晶体的SEM图谱以及相应的元素映射图, 其中(b) NaYF4:50%Yb3+/2%Tm3+; (c) Tm@Y; (d) Tm@Y@Er; (e) Tm@Y@Er@Y; (f) Tm@Y@Er@Y@Yb.

    Figure 1.  (a) XRD patterns of NaYF4:50%Yb3+/2%Tm3+ with different core-shell microcrystals. (b)–(f) SEM images and element mapping of the NaYF4:50%Yb3+/2%Tm3+ with different core-shell microcrystals: (b) NaYF4:50%Yb3+/2%Tm3+; (c) Tm@Y; (d) Tm@Y@Er; (e) Tm@Y@Er@Y; (f) Tm@Y@Er@Y@Yb.

    图 2  在980 nm激光激发下, (a), (b) NaYF4:50%Yb3+/2%Tm3+微米晶体包覆不同壳层阶段时不同激发位置处的上转换发射光谱, (c), (d) 发射峰面积及其红绿比与红蓝比. 插图为对应的发光图片; a, NaYF4:50%Yb3+/2%Tm3+; b, Tm@Y; c, Tm@Y@Er; d, Tm@Y@Er@Y; e, Tm@Y@Er@Y@Yb

    Figure 2.  (a), (b) Upconversion emission spectra, (c), (d) emission peak areas and R/G ratio, R/B ratio NaYF4:50%Yb3+/2%Tm3+ with different core-shell microcrystals under 980 nm laser excitation. The insert is corresponding luminescence micrographs. a, NaYF4:50%Yb3+/2%Tm3+; b, Tm@Y; c, Tm@Y@Er; d, Tm@Y@Er@Y; e, Tm@Y@Er@Y@Yb.

    图 3  980 nm激光激发下, (a) 单颗粒Tm@Er@Yb及(b) 单颗粒Tm@Y@Er@Y@Yb微米核壳结构在不同激发位置处的上转换发射光谱(插图为其发光图片), 以及相应的(c) 强度变化图及(d) CIE图

    Figure 3.  Upconversion emission spectra of (a) Tm@Er@Yb and (b) Tm@Y@Er@Y@Yb core-shell microcrystals at different excitation conditions under 980 nm laser excitation (The insert is corresponding luminescence micrographs), and corresponding (c) emission peak area trends and (d) CIE coordinate chart.

    图 4  在980 nm激光激发下, 不同微米晶体粉体样品的(a)上转换发射光谱和(b)发射峰面积, 插图为其发光图片 (a, NaYF4:50%Yb3+/2%Tm3+; b, Tm@Y; c, Tm@Y@Er; d, Tm@Y@Er@Y; e, Tm@Y@Er@Y@Yb)

    Figure 4.  (a) Upconversion emission spectra and (b) emission peak areas of the different powder samples under 980 nm laser excitation. The insert is corresponding luminescence micrograps. a, NaYF4:50%Yb3+/2%Tm3+; b, Tm@Y; c, Tm@Y@Er; d, Tm@Y@Er@Y; e, Tm@Y@Er@Y@Yb.

    图 5  在980 nm激光激发下, Tm@Y@Er@Y@Yb核壳微米晶体不同激发位置, 单一NaYbF4:2%Er3+, NaYF4:20%Yb3+/2%Er3+, NaYF4:50%Yb3+/2%Tm3+ 微米晶体在不同功率下的(a)—(f)上转换发射光及其(g)—(l)谱泵浦功率依赖性关系 (a), (g) NaYbF4:2%Er3+壳; (b), (h) NaYF4:20%Yb3+/2%Er3+壳; (c), (i) NaYF4:50%Yb3+/2%Tm3+核; (d), (j) NaYbF4:2%Er3+; (e), (k) NaYF4:20%Yb3+/2%Er3+; (f), (l) NaYF4:50%Yb3+/2%Tm3+

    Figure 5.  (a)–(f) Upconversion emission spectra and (g)–(l) pump power dependences of Tm@Y@Er@Y@Yb microcrystals at different excitation positions and NaYbF4:2%Er3+, NaYF4:20%Yb3+/2%Er3+, NaYF4:50%Yb3+/2%Tm3+ microcrystals under 980 nm laser excitation at different powers: (a), (g) NaYbF4:2%Er3+ shell; (b), (h) NaYF4:20%Yb3+/2%Er3+ shell; (c), (i) NaYF4:50%Yb3+/2%Tm3+ shell; (d), (j) NaYbF4:2%Er3+; (e), (k) NaYF4:20%Yb3+/2%Er3+; (f), (l) NaYF4:50%Yb3+/2%Tm3+.

    图 6  在980 nm激光激发下, Tm@Y@Er@Y@Yb微米核壳中不同离子的能级图和可能的跃迁机制图

    Figure 6.  Under 980 nm excitation, energy level diagram and possible transition mechanism diagram in Tm@Y@Er@Y@Yb core-shell microcrystals

    图 7  (a) 光子条形码防伪概念验证; (b) 980 nm激光激发下, 不同激发位置处晶体的上转换发射光谱以及相应的光子学条形码; (c) 光子学条形码的组合及验证示意图

    Figure 7.  (a) Photonic barcoding proof-of-concept for anti-counterfeiting; (b) upconversion emission spectra of microcrystals and corresponding photonics barcodes under 980 nm laser excitation; (c) schematic illustration of photonics barcodes.

    Baidu
  • [1]

    Sun L D, Wang Y F, Yan C H 2014 Acc. Chem. Res. 47 1001Google Scholar

    [2]

    Himmelstoß S F, Hirsch T 2019 Part. Part. Syst. Char. 36 1900235Google Scholar

    [3]

    Hu Y, Yang Y M, Zhang X F, Wang X, Li X X, Li Y Q, Li T Y, Zhang H W 2020 J. Phys. Chem. C 124 24940Google Scholar

    [4]

    Han Q Y, Zhao B C, Gao W, Li Y X, Sun Z Y, Wang C, Chen Y, Wang Y K, Yan X W, Dong J 2022 Phys. Chem. Chem. Phys. 24 13730.Google Scholar

    [5]

    Zhu X Y, Zhong H X, Zhang F 2023 Acc. Mater. Res. 4 536Google Scholar

    [6]

    Zhang C Y, Yin Q X, Ge S K, Qi J X, Han Q Y, Gao W, Wang Y K, Zhang M D, Dong J 2024 Mater. Res. Bull. 176 112801Google Scholar

    [7]

    Patnam H, Hussain S K, Yu J S 2023 Ceram. Int. 49 2967Google Scholar

    [8]

    Ding M Y, Dong B, Lu Y, Yang X F, Yuan Y J, Bai W F, Wu S T, Ji Z G, Lu C H, Zhang K, Zeng H B 2020 Adv. Mater. 32 2002121Google Scholar

    [9]

    Zhou X Q, Ning L X, Qiao J W, Zhao Y F, Xiong P X, Xia Z G 2022 Nat. Commun. 13 7589Google Scholar

    [10]

    Yao Y N, Gao Z H, Lv Y C, Lin X Q, Liu Y Y, Du Y X, Hu F Q, Zhao Y S 2019 Angew. Chem. Int. Ed. 131 13941Google Scholar

    [11]

    Chen J B, Li M S, Sun R R, Xie Y, Reimers J R, Sun L N 2024 Adv. Funct. Mater. 34 2315276Google Scholar

    [12]

    Ying W T, Nie J H, Fan X M, Xu S Q, Gu J M, Liu S M 2021 Adv. Opt. Mater. 9 2100197Google Scholar

    [13]

    Zheng B Z, Fan J Y, Chen B, Qin X, Wang J, Wang F, Deng R R, Liu X G 2022 Chem. Rev. 122 5519Google Scholar

    [14]

    Fan Y, Liu L, Zhang F 2019 Nano Today 25 68Google Scholar

    [15]

    Han Y D, Li H Y, Wang Y B, Pan Y, Huang L, Song F, Huang W 2017 Sci. Rep. 7 1320Google Scholar

    [16]

    Gao W, Zhang J J, Han S S, Xing Y, Shao L, Chen B H, Han Q Y, Yan X W, Zhang C Y, Dong J 2022 Acta Phys. Sin. 71 234206 (in Chinses) [高伟, 张晶晶, 韩珊珊, 邢宇, 邵琳, 陈斌辉, 韩庆艳, 严学文, 张成云, 董军 2022 71 234206]Google Scholar

    Gao W, Zhang J J, Han S S, Xing Y, Shao L, Chen B H, Han Q Y, Yan X W, Zhang C Y, Dong J 2022 Acta Phys. Sin. 71 234206 (in Chinses)Google Scholar

    [17]

    Gao W, Shao L, Han S S, Xing Y, Zhang J J, Chen B H, Han Q Y, Yan X W, Zhang C Y, Dong J 2023 Acta Phys. Sin. 72 024207 (in Chinses) [高伟, 邵琳, 韩珊珊, 邢宇, 张晶晶, 陈斌辉, 韩庆艳, 严学文, 张成云, 董军 2023 72 024207]Google Scholar

    Gao W, Shao L, Han S S, Xing Y, Zhang J J, Chen B H, Han Q Y, Yan X W, Zhang C Y, Dong J 2023 Acta Phys. Sin. 72 024207 (in Chinses)Google Scholar

    [18]

    He E J, Yu J J, Wang C, Jiang Y, Zuo X Z, Xu B, Wen J, Qin Y F, Wang Z J 2020 Mater. Res. Bull. 121 110613Google Scholar

    [19]

    Yang D D, Peng Z X, Guo X, Qiao S Q, Zhao P, Zhan Q Q, Qiu J R, Yang Z M, Dong G P 2021 Adv. Opt. Mater. 9 2100044Google Scholar

    [20]

    Jin L M, Chen X, Siu C K, Wang F, Yu S F 2017 ACS Nano 11 843Google Scholar

    [21]

    Zhou Z Q, Xue J B, Zhang B P, Wang C, Yang X C, Fan WF, Ying L Y, Zheng Z W, Xie Y J, Wu Y F, Yang X D, Zhang D 2021 Appl. Phys. Lett. 118 173301Google Scholar

    [22]

    Gao W, Sun Z Y, Guo L C, Han S S, Chen B H, Han Q Y, Yan X W, Wang Y K, Liu J H, Dong J 2022 Acta Phys. Sin. 71 034207 (in Chinses) [高伟, 孙泽煜, 郭立淳, 韩珊珊, 陈斌辉, 韩庆艳, 严学文, 王勇凯, 刘继红, 董军 2022 71 034207]Google Scholar

    Gao W, Sun Z Y, Guo L C, Han S S, Chen B H, Han Q Y, Yan X W, Wang Y K, Liu J H, Dong J 2022 Acta Phys. Sin. 71 034207 (in Chinses)Google Scholar

    [23]

    Wu W W, Chen D Q, Zhou Y, Wang Z Y, Ji Z G 2016 J. Alloys Compd. 682 275Google Scholar

    [24]

    Sun J, Zhang Z H, Zhao H F, Jiang H 2016 Chin. J. Lumin. 37 526 (in Chinses) [苏俊, 张振华, 赵会峰, 姜宏 2016 发光学报 37 526]Google Scholar

    Sun J, Zhang Z H, Zhao H F, Jiang H 2016 Chin. J. Lumin. 37 526 (in Chinses)Google Scholar

    [25]

    Lüthi S R, Pollnau M, Güdel H U, Hehlen M P 1999 Phys. Rev. B 60 162Google Scholar

    [26]

    Sun T Y, Li Y H, Ho W L, Zhu Q, Chen X, Jin L M, Zhu H M, Huang B L, Lin J, Little B E, Chu S T, Wang F 2019 Nat. Commun. 10 1811Google Scholar

    [27]

    Bai X, Song H W, Pan G H, Lei Y Q, Wang T, Ren X G, Lu S Z, Dong B, Dai Q L, Fan L B 2007 J. Phys. Chem. C 111 13611Google Scholar

    [28]

    Mehrdel B, Nikbakht A, Aziz A A, Jameel M S, Dheyab M A, Khaniabadi P M 2022 Nanotechnology 33 082001Google Scholar

    [29]

    Yan X W, Zhang J L, Zhang Z Y, Ding P, Han Q Y, Zhang C Y, Gao W, Dong J 2024 Acta Phys. Sin. 73 054206 (in Chinses) [严学文, 张景蕾, 张正宇, 丁鹏, 韩庆艳, 张成云, 高伟, 董军 2024 73 054206]Google Scholar

    Yan X W, Zhang J L, Zhang Z Y, Ding P, Han Q Y, Zhang C Y, Gao W, Dong J 2024 Acta Phys. Sin. 73 054206 (in Chinses)Google Scholar

    [30]

    Lee C, Park H, Kim W, Park S 2019 Phys. Chem. Chem. Phys. 21 24026Google Scholar

    [31]

    Lin H, Xu D K, Cheng Z Y, Li Y j, Xu L Q, Ma Y, Yang H S, Zhang Y L 2020 Appl. Surf. Sci. 514 146074Google Scholar

    [32]

    Fan X M, Nie J H, Ying W T, Xu S Q, Gu J M, Liu S M 2021 Dalton Trans. 50 12234Google Scholar

    [33]

    Gao Z H, Yang S, Xu B Y, Zhang T J, Chen S W, Zhang W G, Sun X, Wang Z F, Wang X, Meng X G, Zhao Y S 2021 Angew. Chem. Int. Ed. 60 24519Google Scholar

  • [1] Mu Li-Peng, Zhou Yao, Zhao Jian-Xing, Wang Li, Jiang Li, Zhou Jian-Hong. Enhancement of NaYF4:Yb3+/Er3+ up-conversion luminescence based on anodized alumina template. Acta Physica Sinica, 2024, 73(3): 037803. doi: 10.7498/aps.73.20231405
    [2] Yan Xue-Wen, Zhang Jing-Lei, Zhang Zheng-Yu, Ding Peng, Han Qing-Yan, Zhang Cheng-Yun, Gao Wei, Dong Jun. Enhancement mechanism of red up-conversion emission in single NaYbF4:2%Er3+@NaYbF4 micron core-shell structure. Acta Physica Sinica, 2024, 73(5): 054206. doi: 10.7498/aps.73.20231663
    [3] Arepati Xiakeer, Wang Lin-Xiang, Li Qing, Bai Yun-Feng, Munire Maimaiti. Preparation and temperature sensing properties of Tm3+, Yb3+ co-doped Bi2WO6 upconversion luminescent materials. Acta Physica Sinica, 2023, 72(6): 060701. doi: 10.7498/aps.72.20222143
    [4] Gao Wei, Shao Lin, Han Shan-Shan, Xing Yu, Zhang Jing-Jing, Chen Bin-Hui, Han Qing-Yan, Yan Xue-Wen, Zhang Cheng-Yun, Dong Jun. Upconversion white-light emission luminescence characteristics based on single-particle NaYF4 microrod. Acta Physica Sinica, 2023, 72(2): 024207. doi: 10.7498/aps.72.20221606
    [5] Chen Gui-Ling, Ma Jia-Jia, Sun Jia-Shi, Zhang Jin-Su, Li Xiang-Ping, Xu Sai, Zhang Xi-Zhen, Cheng Li-Hong, Chen Bao-Jiu. Preparation and upconversion luminescence properties of GdTaO4:RE/Yb(RE=Tm, Er) phosphor through experimental optimization design. Acta Physica Sinica, 2022, 71(16): 163301. doi: 10.7498/aps.71.20220474
    [6] Gao Wei, Zhang Jing-Jing, Han Shan-Shan, Xing Yu, Shao Lin, Chen Bin-Hui, Han Qing-Yan, Yan Xue-Wen, Zhang Cheng-Yun, Dong Jun. Energy transfer characteristics of single-particle NaYF4 core-shell structure. Acta Physica Sinica, 2022, 71(23): 234206. doi: 10.7498/aps.71.20221454
    [7] Gao Wei, Sun Ze-Yu, Guo Li-Chun, Han Shan-Shan, Chen Bin-Hui, Han Qing-Yan, Yan Xue-Wen, Wang Yong-Kai, Liu Ji-Hong, Dong Jun. Upconversion luminescence characteristics of Ho3+ ion doped single-particle fluoride micron core-chell structure. Acta Physica Sinica, 2022, 71(3): 034207. doi: 10.7498/aps.71.20211719
    [8] Upconversion luminescence characteristics of Ho3+ ion doped single-particle fluoride micron core-chell structure*. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211719
    [9] Gao Wei, Wang Bo-Yang, Sun Ze-Yu, Gao Lu, Zhang Chen-Xue, Han Qing-Yan, Dong Jun. Tuning upconversion emissions of Ho3+ through changing excitation conditions. Acta Physica Sinica, 2020, 69(3): 034207. doi: 10.7498/aps.69.20191333
    [10] Gao Wei, Wang Bo-Yang, Han Qing-Yan, Han Shan-Shan, Cheng Xiao-Tong, Zhang Chen-Xue, Sun Ze-Yu, Liu Lin, Yan Xue-Wen, Wang Yong-Kai, Dong Jun. Building vertical gold nanorod arrays to enhance upconversion luminescence of β-NaYF4: Yb3+/Er3+ nanocrystals. Acta Physica Sinica, 2020, 69(18): 184213. doi: 10.7498/aps.69.20200575
    [11] Gao Wei, Dong Jun. Tuning upconversion fluorescence emission of -NaLuF4:Yb3+/Ho3+ nanocrystals through codoping Ce3+ ions. Acta Physica Sinica, 2017, 66(20): 204206. doi: 10.7498/aps.66.204206
    [12] Mao Xin-Guang, Wang Jun, Shen Jie. Upconversion luminescence properties in Er3+/Yb3+ codoped TiO2 films prepared by magnetron sputtering. Acta Physica Sinica, 2014, 63(8): 087803. doi: 10.7498/aps.63.087803
    [13] Zheng Long-Jiang, Li Ya-Xin, Liu Hai-Long, Xu Wei, Zhang Zhi-Guo. Up-conversion luminescence and temperature characteristics of Tm3+, Yb3+ co-doped CaWO4 polycrystal material. Acta Physica Sinica, 2013, 62(24): 240701. doi: 10.7498/aps.62.240701
    [14] Wang Da-Gang, Zhou Ya-Xun, Wang Xun-Si, Dai Shi-Xun, Shen Xiang, Chen Fei-Fei, Wang Sen. Upconversion luminescence of Tm3+/Ho3+/Yb3+ codoped tellurite glass used for white light emission. Acta Physica Sinica, 2010, 59(9): 6256-6260. doi: 10.7498/aps.59.6256
    [15] Yuan Ning-Yi, Chen Xiao-Shuang, Ding Jian-Ning, He Ze-Jun, Li Feng, Lu Wei. Quantum effect and up-conversion luminescence of ZnO-SiO2 composite films synthesized by sol-gel technique. Acta Physica Sinica, 2009, 58(4): 2649-2653. doi: 10.7498/aps.58.2649
    [16] Gan Zong-Song, Yu Hua, Li Yan-Ming, Wang Ya-Nan, Chen Hui, Zhao Li-Juan. Investigation on up-conversion luminescence of Tm3+ and Yb3+ codoped oxy-fluorosilicate glass ceramics. Acta Physica Sinica, 2008, 57(9): 5699-5704. doi: 10.7498/aps.57.5699
    [17] Jin Zhe, Nie Qiu-Hua, Xu Tie-Feng, Dai Shi-Xun, Shen Xiang, Zhang Xiang-Hua. Energy transfer and upconversion luminescence of Tm3+/Yb3+ co-doped lanthanum-zinc-lead-tellurite glasses. Acta Physica Sinica, 2007, 56(4): 2261-2267. doi: 10.7498/aps.56.2261
    [18] Wen Lei, Zhang Li-Yan, Yang Jian-Hu, Wang Guo-Nian, Chen Wei, Hu Li- Li. Upconversion emission properties of Er3+ in fluoride (halide) phosphate tellurite glasses. Acta Physica Sinica, 2006, 55(3): 1486-1490. doi: 10.7498/aps.55.1486
    [19] Chen Xiao-Bo, Liu Kai, Zhang Jian, Wang Guo-Wen, Chen Chang-Tian. . Acta Physica Sinica, 2002, 51(3): 690-695. doi: 10.7498/aps.51.690
    [20] Zhao Li-Juan, Sun Ling-Dong, Xu Jing-Jun, Zhang Guang-Yin. . Acta Physica Sinica, 2001, 50(1): 63-67. doi: 10.7498/aps.50.63
Metrics
  • Abstract views:  947
  • PDF Downloads:  30
  • Cited By: 0
Publishing process
  • Received Date:  20 July 2024
  • Accepted Date:  06 August 2024
  • Available Online:  19 August 2024
  • Published Online:  20 September 2024

/

返回文章
返回
Baidu
map