Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Tuning upconversion fluorescence emission of -NaLuF4:Yb3+/Ho3+ nanocrystals through codoping Ce3+ ions

Gao Wei Dong Jun

Citation:

Tuning upconversion fluorescence emission of -NaLuF4:Yb3+/Ho3+ nanocrystals through codoping Ce3+ ions

Gao Wei, Dong Jun
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Rare-earth-doped up-conversion (UC) fluoride materials have been widely used in phosphors, color displays, optical storages, solid-state lasers, solar cells and biomedical imaging, due to the fact that their low phonon energy can effectively suppress the nonradiative multiphonon relaxation process. In this work, the NaLuF4:Yb3+/Ho3+ nanocrystals are successfully synthesized by a facile solvothermal method. The crystal structure and morphology of the NaLuF4 nanocrystals are characterized by the X-ray diffraction (XRD) patterns and transmission electron microscopy (TEM) respectively. The diffraction peaks are well consistent with those of high-purity hexagonal NaLuF4 (JCPDS No. 77-2042, P63/m space group). The TEM image reveals that the product is composed of monodisperse hexagonal rods with an average length of about 170 nm and an average diameter of 30 nm. The crystal structure and morphology do not present obvious change with the increasing Ce3+ ion concentration, which is due to the similarity in ion radius between Ce3+ and Lu3+. Under 980 nm excitation, the UC emissions of -NaLuF4:Yb3+/Ho3+ nanocrystals with different Ce3+ codoping concentrations are carefully studied. The strong green and red UC emissions of Ho3+ ions are observed in -NaLuF4 nanocrystals. It can be found that the UC emission of Ho3+ ions is tuned from green to red in -NaLuF4 nanocrystals through increasing Ce3+ ion concentrations from 0 to 12%, and the red-to-green (R/G) ratio is enhanced from 0.34 to 8.44. According to the level structure of Ho3+ ions, the red UC emission originates from the excited state 5F5. However, the population of the 5F5 excited state mainly depends on the two nonradiative relaxation processes of 5S2/5F45F5 and 5I65I7 transitions. In fact, the two nonradiative relaxation processes are very difficult to occur according to multiphonon nonradiative relaxation rate. When Ce3+ ion is introduced into the system, the red UC emission intensity and R/G ratio of Ho3+ are increased, because the energy gap from the excited state 5F7/2 to the ground state 2F5/2 is about 3000 cm-1 for Ce3+ ions, which is similar to the gaps of 5S2/5F45F5 and 5I65I7 transitions of Ho3+ ions. According to the energy conservation law, the two inefficient nonradiative processes from the 5S2/5F4 and 5I6 states of Ho3+ ions are substituted in order by resonant cross relaxation (CR) processes 5S2 (5F4) (Ho3+) + 2F5/2 (Ce3+5F5 (Ho3+) + 2F7/2 (Ce3+) and 5I6 (Ho3+) + 2F5/2 (Ce3+)5I7 (Ho3+) +2F7/2 (Ce3+) between Ho3+ and Ce3+ ions. These two resonant CR processes can transfer populations from the 5S2/5F4 state and 5I6 state to the 5F5 state and its intermediate 5I7 state, respectively. The resonant modality and the strong interaction between Ho3+ and Ce3+ ions are employed to enhance the red emission and suppress the green emission. The occurrence of CR process between Ho3+ and Ce3+ ions is further proved by the down-conversion emission spectra of Ho3+ ions under 532 and 980 nm laser excitation, respectively. We demonstrate that the highly efficient red UC emission of -NaLuF4:Yb3+/Ho3+/Ce3+ nanocrystals offers opportunities as desired optical materials for color displays, anticounterfeiting techniques and multiplexed labeling applications.
      Corresponding author: Gao Wei, gaowei@xupt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11604262), the Project of Shaanxi Provincial Education Department, China (Grant No. 16JK1707), and the Shaanxi Provincial Research Plan for Young Scientific and Technological New Stars, China (Grant No. 2015KJXX-40).
    [1]

    Menyuk N, Dwight K, Pinaud F 1972 Appl. Phys. Lett. 21 159

    [2]

    Stockman M 2004 Nat. Mater. 3 423

    [3]

    Cheben P, Monte F, Worsfold D, Carlsson D, Grover C, Mackenzie J 2000 Nature 408 64

    [4]

    Rumbles G 2001 Nature 409 572

    [5]

    Huang X, Han S, Huang W, Liu X G 2013 Chem. Soc. Rev. 42 173

    [6]

    Lim M E, Lee Y L, Zhang Y, Chu J H 2012 Biomaterials 33 1912

    [7]

    Gao W, Dong J, Wang R B, Wang Z J, Zheng H R 2016 Acta Phys. Sin. 65 084205 (in Chinese)[高伟, 董军, 王瑞博, 王朝晋, 郑海荣2016 65 084205]

    [8]

    Zeng S J, Xiao J J, Yang Q B, Hao J H 2012 J. Mater. Chem. 22 9870

    [9]

    Gao D L, Zheng H R, Tian Y, Lei Y, Cui M, He E J, Zhang X S 2010 Scientia Sinica Phys. Mech. Astron. 40 287 (in Chinese)[高当丽, 郑海荣, 田宇, 雷瑜, 崔敏, 何恩节, 张喜生2010中国科学:物理学力学天文学40 287]

    [10]

    Chen G Y, Ohulchanskyy T Y, Kachynski A, Ǻgren H, Prasad P N 2011 ACS Nano 5 4981

    [11]

    Ding M Y, Chen D Q, Wan Z Y, Zhou Y, Zhong J S, Xi J H, Ji Z G 2015 J. Mater. Sci. 50 6779

    [12]

    Ai Y, Tu D Y, Zheng W, Liu Y S, Kong J T, Hu P, Chen Z, Huang M D, Chen X Y 2013 Nanoscale 5 6430

    [13]

    Heer S, Kompe K, Gudel H U, Haase M 2004 Adv. Mater. 16 2102

    [14]

    Mai H X, Zhang Y W, Sun L D, Yan C H 2007 J. Phys. Chem. C 111 13721

    [15]

    Zeng S J, Xiao J J, Yang Q B, Hao J H 2012 J. Mater. Chem. 22 9870

    [16]

    Wang L L, Lan M, Liu Z Y, Qin G S, Wu C F, Wang X, Qin W P, Huang W, Huang L 2013 J. Mater. Chem. C 1 2485

    [17]

    Shi F, Wang J S, Zhai X S, Zhao D, Qin W P 2011 Cryst. Eng. Comm. 13 3782

    [18]

    Yang T S, Sun Y, Liu Q, Feng W, Yang P Y, Li F Y 2012 Biomaterials 33 3733

    [19]

    He E J, Zheng H R, Gao W, Tu Y X, Lu Y, Li G A 2013 Mater. Res. Bull. 48 3505

    [20]

    Liu Q, Sun Y, Yang T S, Feng W, Li C G, Li F Y 2011 J. Am. Chem. Soc. 133 17122

    [21]

    Boyer J C, Vetrone F, Cuccia L A, Capobianco J A 2006 J. Am. Chem. Soc. 128 7444

    [22]

    Chang J, Liu Y, Li J, Wu S L, Niu W B, Zhang S F 2013 J. Mater. Chem. C 1 1168

    [23]

    He E J, Zheng H R, Gao W, Lu Y, Li J N, Wei Y, Wang D, Zhu G Q 2013 Acta Phys. Sin. 62 237803 (in Chinese)[何恩节, 郑海荣, 高伟, 鹿盈, 李俊娜, 魏映, 王灯, 朱刚强2013 62 237803]

    [24]

    Li Y, Wang G F, Pan K, Fan N Y, Liu S, Feng L 2013 RSC Adv. 3 1683

    [25]

    Deng R R, Qin F, Chen R F, Huang W, Hong M H, Liu X G 2015 Nat. Nanotech. 10 237

    [26]

    Chen G Y, Liu H C, Somesfalean G, Liang H J, Zhang Z G 2009 Nanotechnology 20 385704

    [27]

    Gao W, Zheng H R, Han Q Y, He E J, Gao F Q, Wang R B 2014 J. Mater. Chem. C 2 5327

    [28]

    Gao W, Dong J, Liu J H, Yan X W 2016 J. Lumine. 179 562

    [29]

    Zhu W, Zhao S L, Liang Z Q, Yang Y X, Zhang J J, Xu Z 2016 J. Alloy Compd. 659 146

    [30]

    Shannon R D 1976 Acta Crystallogr. A 32 751

    [31]

    Dou Q Q, Zhang Y 2011 Langmuir 27 13236

    [32]

    Gilliland G D, Powell R C 1988 Phys. Rev. B 38 9958

    [33]

    Schmidt T, Mller G, Spanhel L 1998 Chem. Mater. 10 65

    [34]

    Wang F, Liu X G 2009 Chem. Soc. Rev. 38 976

  • [1]

    Menyuk N, Dwight K, Pinaud F 1972 Appl. Phys. Lett. 21 159

    [2]

    Stockman M 2004 Nat. Mater. 3 423

    [3]

    Cheben P, Monte F, Worsfold D, Carlsson D, Grover C, Mackenzie J 2000 Nature 408 64

    [4]

    Rumbles G 2001 Nature 409 572

    [5]

    Huang X, Han S, Huang W, Liu X G 2013 Chem. Soc. Rev. 42 173

    [6]

    Lim M E, Lee Y L, Zhang Y, Chu J H 2012 Biomaterials 33 1912

    [7]

    Gao W, Dong J, Wang R B, Wang Z J, Zheng H R 2016 Acta Phys. Sin. 65 084205 (in Chinese)[高伟, 董军, 王瑞博, 王朝晋, 郑海荣2016 65 084205]

    [8]

    Zeng S J, Xiao J J, Yang Q B, Hao J H 2012 J. Mater. Chem. 22 9870

    [9]

    Gao D L, Zheng H R, Tian Y, Lei Y, Cui M, He E J, Zhang X S 2010 Scientia Sinica Phys. Mech. Astron. 40 287 (in Chinese)[高当丽, 郑海荣, 田宇, 雷瑜, 崔敏, 何恩节, 张喜生2010中国科学:物理学力学天文学40 287]

    [10]

    Chen G Y, Ohulchanskyy T Y, Kachynski A, Ǻgren H, Prasad P N 2011 ACS Nano 5 4981

    [11]

    Ding M Y, Chen D Q, Wan Z Y, Zhou Y, Zhong J S, Xi J H, Ji Z G 2015 J. Mater. Sci. 50 6779

    [12]

    Ai Y, Tu D Y, Zheng W, Liu Y S, Kong J T, Hu P, Chen Z, Huang M D, Chen X Y 2013 Nanoscale 5 6430

    [13]

    Heer S, Kompe K, Gudel H U, Haase M 2004 Adv. Mater. 16 2102

    [14]

    Mai H X, Zhang Y W, Sun L D, Yan C H 2007 J. Phys. Chem. C 111 13721

    [15]

    Zeng S J, Xiao J J, Yang Q B, Hao J H 2012 J. Mater. Chem. 22 9870

    [16]

    Wang L L, Lan M, Liu Z Y, Qin G S, Wu C F, Wang X, Qin W P, Huang W, Huang L 2013 J. Mater. Chem. C 1 2485

    [17]

    Shi F, Wang J S, Zhai X S, Zhao D, Qin W P 2011 Cryst. Eng. Comm. 13 3782

    [18]

    Yang T S, Sun Y, Liu Q, Feng W, Yang P Y, Li F Y 2012 Biomaterials 33 3733

    [19]

    He E J, Zheng H R, Gao W, Tu Y X, Lu Y, Li G A 2013 Mater. Res. Bull. 48 3505

    [20]

    Liu Q, Sun Y, Yang T S, Feng W, Li C G, Li F Y 2011 J. Am. Chem. Soc. 133 17122

    [21]

    Boyer J C, Vetrone F, Cuccia L A, Capobianco J A 2006 J. Am. Chem. Soc. 128 7444

    [22]

    Chang J, Liu Y, Li J, Wu S L, Niu W B, Zhang S F 2013 J. Mater. Chem. C 1 1168

    [23]

    He E J, Zheng H R, Gao W, Lu Y, Li J N, Wei Y, Wang D, Zhu G Q 2013 Acta Phys. Sin. 62 237803 (in Chinese)[何恩节, 郑海荣, 高伟, 鹿盈, 李俊娜, 魏映, 王灯, 朱刚强2013 62 237803]

    [24]

    Li Y, Wang G F, Pan K, Fan N Y, Liu S, Feng L 2013 RSC Adv. 3 1683

    [25]

    Deng R R, Qin F, Chen R F, Huang W, Hong M H, Liu X G 2015 Nat. Nanotech. 10 237

    [26]

    Chen G Y, Liu H C, Somesfalean G, Liang H J, Zhang Z G 2009 Nanotechnology 20 385704

    [27]

    Gao W, Zheng H R, Han Q Y, He E J, Gao F Q, Wang R B 2014 J. Mater. Chem. C 2 5327

    [28]

    Gao W, Dong J, Liu J H, Yan X W 2016 J. Lumine. 179 562

    [29]

    Zhu W, Zhao S L, Liang Z Q, Yang Y X, Zhang J J, Xu Z 2016 J. Alloy Compd. 659 146

    [30]

    Shannon R D 1976 Acta Crystallogr. A 32 751

    [31]

    Dou Q Q, Zhang Y 2011 Langmuir 27 13236

    [32]

    Gilliland G D, Powell R C 1988 Phys. Rev. B 38 9958

    [33]

    Schmidt T, Mller G, Spanhel L 1998 Chem. Mater. 10 65

    [34]

    Wang F, Liu X G 2009 Chem. Soc. Rev. 38 976

  • [1] Gao Wei, Zhang Zheng-Yu, Zhang Jing-Lei, Ding Peng, Han Qing-Yan, Zhang Cheng-Yun, Yan Xue-Wen, Dong Jun. Constructing micro/nano-photonics barcodes based on micro-region upconversion emission spectrum of single core-shell microcrystal. Acta Physica Sinica, 2024, 73(18): 184202. doi: 10.7498/aps.73.20241015
    [2] Mu Li-Peng, Zhou Yao, Zhao Jian-Xing, Wang Li, Jiang Li, Zhou Jian-Hong. Enhancement of NaYF4:Yb3+/Er3+ up-conversion luminescence based on anodized alumina template. Acta Physica Sinica, 2024, 73(3): 037803. doi: 10.7498/aps.73.20231405
    [3] Yan Xue-Wen, Zhang Jing-Lei, Zhang Zheng-Yu, Ding Peng, Han Qing-Yan, Zhang Cheng-Yun, Gao Wei, Dong Jun. Enhancement mechanism of red up-conversion emission in single NaYbF4:2%Er3+@NaYbF4 micron core-shell structure. Acta Physica Sinica, 2024, 73(5): 054206. doi: 10.7498/aps.73.20231663
    [4] Gao Wei, Luo Yi-Fan, Xing Yu, Ding Peng, Chen Bin-Hui, Han Qing-Yan, Yan Xue-Wen, Zhang Cheng-Yun, Dong Jun. Red upconversion emission of Er3+ enhanced by building NaErF4@ NaYbF4:2%Er3+ core-shell structure. Acta Physica Sinica, 2023, 72(17): 174204. doi: 10.7498/aps.72.20230762
    [5] Gao Wei, Sun Ze-Yu, Guo Li-Chun, Han Shan-Shan, Chen Bin-Hui, Han Qing-Yan, Yan Xue-Wen, Wang Yong-Kai, Liu Ji-Hong, Dong Jun. Upconversion luminescence characteristics of Ho3+ ion doped single-particle fluoride micron core-chell structure. Acta Physica Sinica, 2022, 71(3): 034207. doi: 10.7498/aps.71.20211719
    [6] Chen Gui-Ling, Ma Jia-Jia, Sun Jia-Shi, Zhang Jin-Su, Li Xiang-Ping, Xu Sai, Zhang Xi-Zhen, Cheng Li-Hong, Chen Bao-Jiu. Preparation and upconversion luminescence properties of GdTaO4:RE/Yb(RE=Tm, Er) phosphor through experimental optimization design. Acta Physica Sinica, 2022, 71(16): 163301. doi: 10.7498/aps.71.20220474
    [7] Upconversion luminescence characteristics of Ho3+ ion doped single-particle fluoride micron core-chell structure*. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211719
    [8] Liu Bei, Lu Xi-Jian, Liu Xiao-Ning, Wu Yi-Pin, Zou Bin. Hot injection synthesis of core-shell upconversion nanoparticles for bioimaging application. Acta Physica Sinica, 2020, 69(14): 147801. doi: 10.7498/aps.69.20200347
    [9] Gao Wei, Wang Bo-Yang, Han Qing-Yan, Han Shan-Shan, Cheng Xiao-Tong, Zhang Chen-Xue, Sun Ze-Yu, Liu Lin, Yan Xue-Wen, Wang Yong-Kai, Dong Jun. Building vertical gold nanorod arrays to enhance upconversion luminescence of β-NaYF4: Yb3+/Er3+ nanocrystals. Acta Physica Sinica, 2020, 69(18): 184213. doi: 10.7498/aps.69.20200575
    [10] Gao Wei, Wang Bo-Yang, Sun Ze-Yu, Gao Lu, Zhang Chen-Xue, Han Qing-Yan, Dong Jun. Tuning upconversion emissions of Ho3+ through changing excitation conditions. Acta Physica Sinica, 2020, 69(3): 034207. doi: 10.7498/aps.69.20191333
    [11] Yan Xue-Wen, Wang Zhao-Jin, Wang Bo-Yang, Sun Ze-Yu, Zhang Chen-Xue, Han Qing-Yan, Qi Jian-Xia, Dong Jun, Gao Wei. Enhanced red upconversion fluorescence emission of Ho3+ ions in NaLuF4 nanocrystals through building core-shell structure. Acta Physica Sinica, 2019, 68(17): 174204. doi: 10.7498/aps.68.20190441
    [12] Gao Wei, Dong Jun, Wang Rui-Bo, Wang Zhao-Jin, Zheng Hai-Rong. Upconversion flourescence characteristics of Er3+/Yb3+ codoped NaYF4 and LiYF4 microcrystals. Acta Physica Sinica, 2016, 65(8): 084205. doi: 10.7498/aps.65.084205
    [13] Yang Jian-Zhi, Qiu Jian-Bei, Yang Zheng-Wen, Song Zhi-Guo, Yang Yong, Zhou Da-Cheng. Preparation and upconversion luminescence properties of Ba5SiO4Cl6: Yb3+, Er3+, Li+ phosphors. Acta Physica Sinica, 2015, 64(13): 138101. doi: 10.7498/aps.64.138101
    [14] Mao Xin-Guang, Wang Jun, Shen Jie. Upconversion luminescence properties in Er3+/Yb3+ codoped TiO2 films prepared by magnetron sputtering. Acta Physica Sinica, 2014, 63(8): 087803. doi: 10.7498/aps.63.087803
    [15] Zheng Long-Jiang, Li Ya-Xin, Liu Hai-Long, Xu Wei, Zhang Zhi-Guo. Up-conversion luminescence and temperature characteristics of Tm3+, Yb3+ co-doped CaWO4 polycrystal material. Acta Physica Sinica, 2013, 62(24): 240701. doi: 10.7498/aps.62.240701
    [16] Yuan Ning-Yi, Chen Xiao-Shuang, Ding Jian-Ning, He Ze-Jun, Li Feng, Lu Wei. Quantum effect and up-conversion luminescence of ZnO-SiO2 composite films synthesized by sol-gel technique. Acta Physica Sinica, 2009, 58(4): 2649-2653. doi: 10.7498/aps.58.2649
    [17] Jin Zhe, Nie Qiu-Hua, Xu Tie-Feng, Dai Shi-Xun, Shen Xiang, Zhang Xiang-Hua. Energy transfer and upconversion luminescence of Tm3+/Yb3+ co-doped lanthanum-zinc-lead-tellurite glasses. Acta Physica Sinica, 2007, 56(4): 2261-2267. doi: 10.7498/aps.56.2261
    [18] Li Jia-Cheng, Xue Tian-Feng, Fan You-Yu, Li Shun-Guang, Hu He-Fang. Effect of introducing Ce3+ on the emission properties of Er3+/Yb3+-doped TeO2-WO3-ZnO glasses. Acta Physica Sinica, 2006, 55(2): 923-928. doi: 10.7498/aps.55.923
    [19] Chen Xiao-Bo, Liu Kai, Zhang Jian, Wang Guo-Wen, Chen Chang-Tian. . Acta Physica Sinica, 2002, 51(3): 690-695. doi: 10.7498/aps.51.690
    [20] WANG DIAN-YUAN, XIE PING-BO, ZHANG WEI-PING, LOU LI-REN, XIA SHANG-DA. A STUDY ON ENERGY TRANSFER AND ENERGY MIGRATION MODELS FOR RE IONS LUMINESCENCE SYSTEM. Acta Physica Sinica, 2001, 50(2): 329-334. doi: 10.7498/aps.50.329
Metrics
  • Abstract views:  6347
  • PDF Downloads:  155
  • Cited By: 0
Publishing process
  • Received Date:  17 March 2017
  • Accepted Date:  27 May 2017
  • Published Online:  05 October 2017

/

返回文章
返回
Baidu
map