-
Tm3+/Ho3+/Yb3+ codoped tellurite glass (TeO2-ZnO-La2O3) was prepared by conventional melt-quenching method. The absorption spectra and upconversion spectra of the glass were measured, and the upconversion luminescence mechanism was analyzed. Intensive red (662 nm), green (546 nm) and blue (480 nm) emissions of the tellurite glass were simultaneously observed at room temperature under 975 nm LD excitation. Upconversion red luminescence are due to the energy transition of Tm3+ ion: 1G4→3F4 and Ho3+ ion: 5F5→5I8, while upconversion green and blue are the results of Ho3+ ion: 5S2→5I8 and Tm3+ ion: 5S2(5F4) →5I8, respectively. With the increasing of Yb3+ content and the pump power, upconversion luminescence are also enhanced. The white light close to the standard white light emission has been obtained by adjusting the concentration of rare earth doping. Our result has practical significance for developing high-quality white LED.
-
Keywords:
- tellurite glasses /
- upconversion luminescence /
- white light /
- Tm3+/Ho3+/Yb3+ codoping
[1] Nakamura S, Mukai T, Sench M 1994 Appl. Phys. Lett. 64 1687
[2] Bergh A, Craford G, Duggal A, Duggal A, Haitz R 2001 Physics Today 54 42
[3] Wang Z J, Li P L, Wang Y, Yang Z P, Guo Q L 2009 Acta Phys.Sin. 58 1257 (in Chinese) [王志军、李盼来、王 颖、杨志平、郭庆林 2009 58 1257]
[4] Xu G F, Rao H B, Yu X M, Li J F, Hou B 2007 Advanced Display 8 59 (in Chinese) [徐国芳、饶海波、余心梅、李君飞、侯 斌 2007 显示技术 8 59]
[5] Chen D Q, Wang Y S, Yu Y L, Huang P, Weng F Y 2008 J. Solid State Chem. 181 2763
[6] Dwivedi Y, Rai A, Rai S B 2008 J. Appl. Phys. 104 3509
[7] Silva J E C, Sa G F, Santa-Cruz P A 2002 J. Alloys Compd. 344 260
[8] Gouveia-Neto A S, Bueno L A, Nascimento R F, Silva E A, Costa E B, Nascimento V B 2007 Appl. Phys. Lett. 91 1114
[9] Gouveia-Neto A S, Bueno L A, Nascimento R F, Costa E B, Ribeiro S J L, Messaddeq Y 2009 Phys. Chem. Glasses 50 37
[10] Yang Z M, Jiang Z H 2005 J. Non-Cryst. Solids 351 2576
[11] Yang Z M, Feng Z M, Jiang Z H 2005 J. Phys. D: Appl. Phys. 38 1629
[12] Xu S Q, Wang W, Deng D G, Zhao S L, Wang H P, Ju D H 2008 J. Rare Earths 26 895
[13] Jin Z, Nie Q H, Xu T F, Dai S X, Shen X, Zhang X H 2007 Acta Phys.Sin. 56 2261 (in Chinese) [金 哲、聂秋华、徐铁峰、戴世勋、沈 祥、章向华 2007 56 2261]
[14] Duan Z C, Zhang J J, He D B, Dai S X, Hu L L 2006 Chin. Phys. 15 209
-
[1] Nakamura S, Mukai T, Sench M 1994 Appl. Phys. Lett. 64 1687
[2] Bergh A, Craford G, Duggal A, Duggal A, Haitz R 2001 Physics Today 54 42
[3] Wang Z J, Li P L, Wang Y, Yang Z P, Guo Q L 2009 Acta Phys.Sin. 58 1257 (in Chinese) [王志军、李盼来、王 颖、杨志平、郭庆林 2009 58 1257]
[4] Xu G F, Rao H B, Yu X M, Li J F, Hou B 2007 Advanced Display 8 59 (in Chinese) [徐国芳、饶海波、余心梅、李君飞、侯 斌 2007 显示技术 8 59]
[5] Chen D Q, Wang Y S, Yu Y L, Huang P, Weng F Y 2008 J. Solid State Chem. 181 2763
[6] Dwivedi Y, Rai A, Rai S B 2008 J. Appl. Phys. 104 3509
[7] Silva J E C, Sa G F, Santa-Cruz P A 2002 J. Alloys Compd. 344 260
[8] Gouveia-Neto A S, Bueno L A, Nascimento R F, Silva E A, Costa E B, Nascimento V B 2007 Appl. Phys. Lett. 91 1114
[9] Gouveia-Neto A S, Bueno L A, Nascimento R F, Costa E B, Ribeiro S J L, Messaddeq Y 2009 Phys. Chem. Glasses 50 37
[10] Yang Z M, Jiang Z H 2005 J. Non-Cryst. Solids 351 2576
[11] Yang Z M, Feng Z M, Jiang Z H 2005 J. Phys. D: Appl. Phys. 38 1629
[12] Xu S Q, Wang W, Deng D G, Zhao S L, Wang H P, Ju D H 2008 J. Rare Earths 26 895
[13] Jin Z, Nie Q H, Xu T F, Dai S X, Shen X, Zhang X H 2007 Acta Phys.Sin. 56 2261 (in Chinese) [金 哲、聂秋华、徐铁峰、戴世勋、沈 祥、章向华 2007 56 2261]
[14] Duan Z C, Zhang J J, He D B, Dai S X, Hu L L 2006 Chin. Phys. 15 209
Catalog
Metrics
- Abstract views: 9085
- PDF Downloads: 991
- Cited By: 0