Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Theoretical study on radiation effect on threshold of transverse mode instability of Yb-doped fiber amplifiers

Cao Jian-Qiu Zhou Shang-De Liu Peng-Fei Huang Zhi-He Wang Ze-Feng Si Lei Chen Jin-Bao

Citation:

Theoretical study on radiation effect on threshold of transverse mode instability of Yb-doped fiber amplifiers

Cao Jian-Qiu, Zhou Shang-De, Liu Peng-Fei, Huang Zhi-He, Wang Ze-Feng, Si Lei, Chen Jin-Bao
cstr: 32037.14.aps.73.20240816
PDF
HTML
Get Citation
  • Yb-doped fiber amplifiers and their applications in radiation environments have become more and more attractive in recent years. However, the radiation effect will cause damage to the Yb-doped fibers, which can give negative effect on the output properties of Yb-doped fiber amplifiers. In this work, the influence of radiation effect on the transverse mode instability (TMI) of Yb-doped fiber amplifier is studied. TMI can couple the single light from the fundamental mode to high-order mode, thereby degenerating the beam quality of fiber amplifier. TMI is considered a key limitation of power up-scaling of fiber amplifiers.In this work, the radiation effect on the TMI is studied theoretically, and a formula of TMI threshold is presented by taking the radiation-induced attenuation (RIA), the most important radiation effect for the TMI, into account. The formula is deduced by introducing the loss of signal light induced by RIA into the formerly reported TMI-threshold formula which can be obtained by the linear stability analysis of the numerical model studying the TMI. Then, the relationship between the TMI and radiation dose is also given with the help of Power-Law describing the relationship between the RIA and radiation dose.With the formula, the variations of TMI threshold with the radiation dose and RIA are studied. It is found, as expected, that the TMI threshold decreases monotonically with the increase of RIA or radiation dose. Nevertheless, it is unexpectedly found that, to some extent, the gain coefficient of fiber amplifiers will also affect the radiation effect on TMI threshold. The results reveal that the increase of gain coefficient will lower the sensitivity of TMI threshold to the radiation dose. However, it is also implied that the gain coefficient cannot be too large because it can also make the TMI threshold lowered. Therefore, in order to maintain a high TMI threshold in a radiation environment, sufficient radiation resistance of Yb-doped fiber is essential.Because the RIA can affect not only the TMI threshold but also the output power or efficiency of Yb-doped fiber amplifier, the comparison between two effects of RIA is also discussed. It is found that the threshold of TMI is more sensitive to the radiation than to the output power or efficiency (see the figure attached below), which means that the TMI can exist in the irradiated Yb-doped fiber amplifier, although the output power is reduced because of RIA. This result can be verified by the experimental observation reported formerly. As a result, TMI can become a key limitation to the output power of Yb-doped fiber amplifier in radiation environments. The relevant results can provide significant guidance for the applications of Yb-doped fiber amplifiers in radiation environments.
      Corresponding author: Chen Jin-Bao, kdchenjinbao@aliyun.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. U20B2058).
    [1]

    Girard S, Kuhnhenn J, Gusarov A, Brichard B, Uffelen M V, Ouerdane Y, Boukenter A, Marcandella C 2013 IEEE Trans. Nucl. Sci. 60 2015Google Scholar

    [2]

    Girard S, Morana A, Ladaci A, Robin T, Mescia L, Bonnefois J J, Boutillier M, Mekki J, Paveau A, Cadier B, Marin E, Ouerdane Y, Boukenter A 2018 J. Optics-UK 20 093001Google Scholar

    [3]

    Henschel H, Kohn O, Schmidt H U, Kirchof J, Unger S 1998 IEEE Trans. Nucl. Sci. 45 1552Google Scholar

    [4]

    Rose T S, Gunn D, Valley G C 2001 J. Lightw. Technol. 19 1918Google Scholar

    [5]

    Faustov A V, Gusarov A, Wuilpart M, Fotiadi A A, Liokumovich L B, Zolotovskiy I O, Tomashuk A L, Schoutheete T D, Mégret P 2013 IEEE Trans. Nucl. Sci. 60 2511Google Scholar

    [6]

    Ma J, Li M, Tan L Y, Zhou Y P, Yu S Y, Ran Q W 2009 Opt. Express 17 15571Google Scholar

    [7]

    Girard S, Ouerdane Y, Tortech B, Marcandella C, Robin T, Cadier B, Baggio J, Paillet P, Ferlet-Cavrois V, Boukenter A, Meunier J P, Schwank J R, Shaneyfelt M R, Dodd P E, Blackmore E W 2009 IEEE Trans. Nucl. Sci. 56 3293Google Scholar

    [8]

    Fox B P, Simmons-Potter K, Thomes W J, Kliner D A V 2010 IEEE Trans. Nucl. Sci. 57 1618Google Scholar

    [9]

    Duchez J B, Mady F, Mebrouk Y, Ollier N, Benabdesselam M 2014 Opt. Lett. 39 5969Google Scholar

    [10]

    Xing Y B, Zhao N, Liao L, Wang Y B, Li H Q, Peng J G, Yang L Y, Dai N L, Li J Y 2015 Opt. Express 23 24236Google Scholar

    [11]

    Chen Y S, Xu H Z, Xing Y B, Liao L, Wang Y B, Zhang F F, He X L, Li H Q, Peng J G, Yang L Y, Dai N L, Li J Y 2018 Opt. Express 26 20430Google Scholar

    [12]

    Tao M M, Chen H W, Feng G B, Luan K P, Wang F, Huang K, Ye X S 2020 Opt. Express 28 10104Google Scholar

    [13]

    Tan S, Li Y, Zhang H S, Wang X W, Jin J 2022 Chin. Phys. B 31 064211Google Scholar

    [14]

    Shao C Y, Ren J J, Wang F, Ollier N, Xie F H, Zhang X Y, Zhang L, Yu C L, Hu L L 2018 J. Phys. Chem. B 122 2809Google Scholar

    [15]

    Kher S, Chaubey S, Oak S M, Gusarov A 2013 IEEE Photonic. Technol. Lett. 25 2070Google Scholar

    [16]

    Fernandez A F, Brichard B, Berghmans F 2003 IEEE Photonic. Technol. Lett. 15 1428Google Scholar

    [17]

    Eidam T, Wirth C, Jauregui C, Stutzki F, Jansen F, Otto H-J, Schmidt O, Schreiber T, Limpert J, Tünnermann A 2011 Opt. Express 19 13218Google Scholar

    [18]

    Beier F, Möller F, Sattler B, Nold J, Liem A, Hupel C, Kuhn S, Hein S, Haarlammert N, Schreiber T, Eberhardt R, Tünnermann A 2018 Opt. Lett. 43 1291Google Scholar

    [19]

    Dong L 2013 Opt. Express 21 2642Google Scholar

    [20]

    Tao R M, Wang X L, Zhou P 2018 IEEE J. Sel. Topics in Quant. Elect. 24 0903319Google Scholar

    [21]

    Dong L 2022 J. Lightw. Technol. 40 4795Google Scholar

    [22]

    Xia N, Yoo S 2020 J. Lightw. Technol. 38 4478Google Scholar

    [23]

    Zervas M N 2017 Proc. of SPIE 10083 100830MGoogle Scholar

    [24]

    Zervas M N 2018 APL Photonic. 4 022802Google Scholar

    [25]

    Zervas M N 2019 Opt. Express 27 19019Google Scholar

    [26]

    Dong L, Ballato J, Kolis J 2023 Opt. Express 31 6690Google Scholar

    [27]

    Cao J Q, Chen M N, Huang Z H, Wang Z F, Chen J B 2024 Opt. Express 32 12892Google Scholar

    [28]

    Kelson I, Hardy A A 1998 IEEE J. Quant. Elect. 34 1570Google Scholar

    [29]

    Jiang Z, Marciante J R 2008 J. Opt. Soc. Am. B 25 247Google Scholar

    [30]

    Richardson D J, Nilsson J, Clarkson W A 2010 J. Opt. Soc. Am. B 27 B63Google Scholar

    [31]

    Snyder A W, Love J D 1983 Optical Waveguide Theory (London: Chapman and Hall) pp254-255

    [32]

    Huang Z M, Shu Q, Luo Y, Tao R M, Feng X, Liu Y, Lin H H, Wang J J, Jing F 2021 J. Opt. Soc. Am. B 38 2945Google Scholar

    [33]

    Lezius M, Predehl K, Stower W, Turler A, Greiter M, Hoeschen C, Thirolf P, Assmann W, Habs D, Prokofiev A, Ekstrom C, Hansch T W, Holzwarth R 2012 IEEE Trans. Nucl. Sci. 59 425Google Scholar

    [34]

    黄宏琪, 赵楠, 陈瑰, 廖雷, 刘自军, 彭景刚, 戴能利 2014 63 200201

    Huang H Q, Zhao N, Chen G, Liao L, Liu Z J, Peng J G, Dai N L 2014 Acta Phys. Sin. 63 200201

    [35]

    Fox B P, Schneider Z V, Simmons-Potter K, Thomes W J, Meister D C, Bambha R P, Kliner D A V 2008 IEEE J. Quant. Elect. 44 581Google Scholar

    [36]

    Fox B P, Simmons-Potter K, Thomes W J, Meister D C, Bambha R P, Kliner D A V 2008 Proc. of SPIE 7095 70950B

    [37]

    Hecht J 2009 Laser Focus World 45 53

    [38]

    Wang Y S, Peng W J, Liu H, Yang X B, Yu H M, Wang Y, Wang J, Feng Y J, Sun Y H, Ma Y, Gao Q S, Tang C 2023 Opt. Lett. 48 2909Google Scholar

  • 图 1  归一化TMI阈值随辐射剂量D、系数C1f的变化, 泵浦光和信号光波长分别为976 nm和1080 nm, 增益系数gsat为2 dB/m, f取值分别为0.5 (a), 0.7 (b), 0.9 (c), 1.1 (d)

    Figure 1.  Variation of normalized TMI threshold with radiation dose D, coefficients C1 and f, the pump wavelength and signal wavelength are 976 nm and 1080 nm, respectively, and the gain coefficient gsat is 2 dB/m. The value of coefficient f are 0.5 (a), 0.7 (b), 0.9 (c), and 1.1 (d), respectively.

    图 2  归一化TMI阈值随辐射剂量D、系数C1f的变化, 泵浦光和信号光波长分别为976 nm和1080 nm, 系数f为0.7, 增益系数取值分别为1 dB/m (a), 3 dB/m (b), 5 dB/m (c), 10 dB/m (d)

    Figure 2.  Variation of normalized TMI threshold with radiation dose D, coefficients C1 and f. The pump wavelength and signal wavelength are 976 nm and 1080 nm respectively, and the coefficient f is 0.7. The value of gain coefficient are 1 dB/m (a), 3 dB/m (b), 5 dB/m (c), and 10 dB/m (d), respectively.

    图 3  不同增益系数对应的TMI阈值随D的变化 (a) C1 = 0.002, f = 0.5; (b)C1 =0.012, f = 0.9, 纤芯直径为30 μm

    Figure 3.  Variation of TMI threshold with D corresponding to various gain coefficient: (a) C1 = 0.002, f = 0.5; (b) C1 = 0.012, f = 0.9, the core diameter is 30 μm.

    图 4  归一化TMI阈值(实线、虚线和点划线)及输出功率比值(空心圆点)随辐致损耗的变化 (a)光纤长度为20 m; (b)光纤长度为10 m

    Figure 4.  Variation of normalized TMI threshold (solid, dashed, and dotted) and output power ratio (hollow dots) with RIA: (a) Yb-doped fiber length is 20 m; (b) Yb-doped fiber length is 10 m.

    图 5  TMI阈值与输出功率随辐致损耗的变化

    Figure 5.  Variation of TMI threshold and output power with RIA.

    Baidu
  • [1]

    Girard S, Kuhnhenn J, Gusarov A, Brichard B, Uffelen M V, Ouerdane Y, Boukenter A, Marcandella C 2013 IEEE Trans. Nucl. Sci. 60 2015Google Scholar

    [2]

    Girard S, Morana A, Ladaci A, Robin T, Mescia L, Bonnefois J J, Boutillier M, Mekki J, Paveau A, Cadier B, Marin E, Ouerdane Y, Boukenter A 2018 J. Optics-UK 20 093001Google Scholar

    [3]

    Henschel H, Kohn O, Schmidt H U, Kirchof J, Unger S 1998 IEEE Trans. Nucl. Sci. 45 1552Google Scholar

    [4]

    Rose T S, Gunn D, Valley G C 2001 J. Lightw. Technol. 19 1918Google Scholar

    [5]

    Faustov A V, Gusarov A, Wuilpart M, Fotiadi A A, Liokumovich L B, Zolotovskiy I O, Tomashuk A L, Schoutheete T D, Mégret P 2013 IEEE Trans. Nucl. Sci. 60 2511Google Scholar

    [6]

    Ma J, Li M, Tan L Y, Zhou Y P, Yu S Y, Ran Q W 2009 Opt. Express 17 15571Google Scholar

    [7]

    Girard S, Ouerdane Y, Tortech B, Marcandella C, Robin T, Cadier B, Baggio J, Paillet P, Ferlet-Cavrois V, Boukenter A, Meunier J P, Schwank J R, Shaneyfelt M R, Dodd P E, Blackmore E W 2009 IEEE Trans. Nucl. Sci. 56 3293Google Scholar

    [8]

    Fox B P, Simmons-Potter K, Thomes W J, Kliner D A V 2010 IEEE Trans. Nucl. Sci. 57 1618Google Scholar

    [9]

    Duchez J B, Mady F, Mebrouk Y, Ollier N, Benabdesselam M 2014 Opt. Lett. 39 5969Google Scholar

    [10]

    Xing Y B, Zhao N, Liao L, Wang Y B, Li H Q, Peng J G, Yang L Y, Dai N L, Li J Y 2015 Opt. Express 23 24236Google Scholar

    [11]

    Chen Y S, Xu H Z, Xing Y B, Liao L, Wang Y B, Zhang F F, He X L, Li H Q, Peng J G, Yang L Y, Dai N L, Li J Y 2018 Opt. Express 26 20430Google Scholar

    [12]

    Tao M M, Chen H W, Feng G B, Luan K P, Wang F, Huang K, Ye X S 2020 Opt. Express 28 10104Google Scholar

    [13]

    Tan S, Li Y, Zhang H S, Wang X W, Jin J 2022 Chin. Phys. B 31 064211Google Scholar

    [14]

    Shao C Y, Ren J J, Wang F, Ollier N, Xie F H, Zhang X Y, Zhang L, Yu C L, Hu L L 2018 J. Phys. Chem. B 122 2809Google Scholar

    [15]

    Kher S, Chaubey S, Oak S M, Gusarov A 2013 IEEE Photonic. Technol. Lett. 25 2070Google Scholar

    [16]

    Fernandez A F, Brichard B, Berghmans F 2003 IEEE Photonic. Technol. Lett. 15 1428Google Scholar

    [17]

    Eidam T, Wirth C, Jauregui C, Stutzki F, Jansen F, Otto H-J, Schmidt O, Schreiber T, Limpert J, Tünnermann A 2011 Opt. Express 19 13218Google Scholar

    [18]

    Beier F, Möller F, Sattler B, Nold J, Liem A, Hupel C, Kuhn S, Hein S, Haarlammert N, Schreiber T, Eberhardt R, Tünnermann A 2018 Opt. Lett. 43 1291Google Scholar

    [19]

    Dong L 2013 Opt. Express 21 2642Google Scholar

    [20]

    Tao R M, Wang X L, Zhou P 2018 IEEE J. Sel. Topics in Quant. Elect. 24 0903319Google Scholar

    [21]

    Dong L 2022 J. Lightw. Technol. 40 4795Google Scholar

    [22]

    Xia N, Yoo S 2020 J. Lightw. Technol. 38 4478Google Scholar

    [23]

    Zervas M N 2017 Proc. of SPIE 10083 100830MGoogle Scholar

    [24]

    Zervas M N 2018 APL Photonic. 4 022802Google Scholar

    [25]

    Zervas M N 2019 Opt. Express 27 19019Google Scholar

    [26]

    Dong L, Ballato J, Kolis J 2023 Opt. Express 31 6690Google Scholar

    [27]

    Cao J Q, Chen M N, Huang Z H, Wang Z F, Chen J B 2024 Opt. Express 32 12892Google Scholar

    [28]

    Kelson I, Hardy A A 1998 IEEE J. Quant. Elect. 34 1570Google Scholar

    [29]

    Jiang Z, Marciante J R 2008 J. Opt. Soc. Am. B 25 247Google Scholar

    [30]

    Richardson D J, Nilsson J, Clarkson W A 2010 J. Opt. Soc. Am. B 27 B63Google Scholar

    [31]

    Snyder A W, Love J D 1983 Optical Waveguide Theory (London: Chapman and Hall) pp254-255

    [32]

    Huang Z M, Shu Q, Luo Y, Tao R M, Feng X, Liu Y, Lin H H, Wang J J, Jing F 2021 J. Opt. Soc. Am. B 38 2945Google Scholar

    [33]

    Lezius M, Predehl K, Stower W, Turler A, Greiter M, Hoeschen C, Thirolf P, Assmann W, Habs D, Prokofiev A, Ekstrom C, Hansch T W, Holzwarth R 2012 IEEE Trans. Nucl. Sci. 59 425Google Scholar

    [34]

    黄宏琪, 赵楠, 陈瑰, 廖雷, 刘自军, 彭景刚, 戴能利 2014 63 200201

    Huang H Q, Zhao N, Chen G, Liao L, Liu Z J, Peng J G, Dai N L 2014 Acta Phys. Sin. 63 200201

    [35]

    Fox B P, Schneider Z V, Simmons-Potter K, Thomes W J, Meister D C, Bambha R P, Kliner D A V 2008 IEEE J. Quant. Elect. 44 581Google Scholar

    [36]

    Fox B P, Simmons-Potter K, Thomes W J, Meister D C, Bambha R P, Kliner D A V 2008 Proc. of SPIE 7095 70950B

    [37]

    Hecht J 2009 Laser Focus World 45 53

    [38]

    Wang Y S, Peng W J, Liu H, Yang X B, Yu H M, Wang Y, Wang J, Feng Y J, Sun Y H, Ma Y, Gao Q S, Tang C 2023 Opt. Lett. 48 2909Google Scholar

  • [1] Zhao Wei, Fu Shi-Jie, Sheng Quan, Xue Kai, Shi Wei, Yao Jian-Quan. Suppression effect of auxiliary laser on stimulated Raman scattering effect of high-power Yb-doped fiber laser amplifier. Acta Physica Sinica, 2024, 73(20): 204201. doi: 10.7498/aps.73.20240895
    [2] Xue Bin-Tao, Zhang Li-Min, Liang Yong-Qi, Liu Ning, Wang Ding-Ping, Chen Liang, Wang Tie-Shan. Proton irradiation induced damage effects in CH3NH3PbI3-based perovskite solar cells. Acta Physica Sinica, 2023, 72(13): 138802. doi: 10.7498/aps.72.20222100
    [3] Wen Yu-Jun, Wang Peng, Xi Xiao-Ming, Zhang Han-Wei, Huang Liang-Jin, Yang Huan, Yan Zhi-Ping, Yang Bao-Lai, Shi Chen, Pan Zhi-Yong, Wang Xiao-Lin, Wang Ze-Feng, Xu Xiao-Jun. Laser diode directly backward pumped high-beam-quality 10-kW fiber laser. Acta Physica Sinica, 2022, 71(24): 244202. doi: 10.7498/aps.71.20221433
    [4] Peng Hai-Bo, Liu Feng-Fei, Zhang Bing-Tao, Zhang Xiao-Yang, Sun Meng-Li, Du Xin, Wang Peng, Yuan Wei, Wang Tie-Shan, Wang Jian-Wei. Comparative studies of irradiation effects in borosilicate glass and fused silica irradiated by energetic Xe ions. Acta Physica Sinica, 2018, 67(3): 038101. doi: 10.7498/aps.67.20172117
    [5] Li Zhe-Fu, Jia Yan-Yan, Liu Ren-Duo, Xu Yu-Hai, Wang Guang-Hong, Xia Xiao-Bin. Irradiation effect of Sm2Co17 type permanent magnets. Acta Physica Sinica, 2017, 66(22): 226101. doi: 10.7498/aps.66.226101
    [6] Cao Jian-Qiu, Liu Wen-Bo, Chen Jin-Bao, Lu Qi-Sheng. Modeling the single-mode thermally guiding very-large-mode-area Yb-doped fiber amplifier. Acta Physica Sinica, 2017, 66(6): 064201. doi: 10.7498/aps.66.064201
    [7] Tao Ru-Mao, Zhou Pu, Wang Xiao-Lin, Si Lei, Liu Ze-Jin. Experimental study on mode instability in high power all-fiber master oscillator power amplifer fiber lasers. Acta Physica Sinica, 2014, 63(8): 085202. doi: 10.7498/aps.63.085202
    [8] Huang Hong-Qi, Zhao Nan, Chen Gui, Liao Lei, Liu Zi-Jun, Peng Jing-Gang, Dai Neng-Li. Effects of γ-radiation on Yb-doped fiber. Acta Physica Sinica, 2014, 63(20): 200201. doi: 10.7498/aps.63.200201
    [9] Sun Ya-Bin, Fu Jun, Xu Jun, Wang Yu-Dong, Zhou Wei, Zhang Wei, Cui Jie, Li Gao-Qing, Liu Zhi-Hong. Study on ionization damage of silicon-germanium heterojunction bipolar transistors at various dose rates. Acta Physica Sinica, 2013, 62(19): 196104. doi: 10.7498/aps.62.196104
    [10] Du Wen-Bo, Leng Jin-Yong, Zhu Jia-Jian, Zhou Pu, Xu Xiao-Jun, Shu Bo-Hong. Theoretical study of two-tone single frequency fiber amplifier with gain competition. Acta Physica Sinica, 2012, 61(11): 114203. doi: 10.7498/aps.61.114203
    [11] Gao Hui, Luo Shun-Zhong, Zhang Hua-Ming, Wang He-Yi. Investigation of a energy conversion silicon chip based on 63Ni radio-voltaic effect. Acta Physica Sinica, 2012, 61(17): 176101. doi: 10.7498/aps.61.176101
    [12] Sheng Yu-Bang, Yang Lü-Yun, Luan Huai-Xun, Liu Zi-Jun, Li Jin-Yan, Dai Neng-Li. Gamma radiation effects on absorption and emission properties of erbium-doped silicate glasses. Acta Physica Sinica, 2012, 61(11): 116301. doi: 10.7498/aps.61.116301
    [13] Xiao Hu, Leng Jin-Yong, Wu Wu-Ming, Wang Xiao-Lin, Ma Yan-Xing, Zhou Pu, Xu Xiao-Jun, Zhao Guo-Min. High efficiency tandem-pumped fiber amplifier. Acta Physica Sinica, 2011, 60(12): 124207. doi: 10.7498/aps.60.124207
    [14] Jin Yu-Zhe, Hu Yi-Pei, Zeng Xiang-Hua, Yang Yi-Jun. Gamma radiation effect on GaN-based blue light-emitting diodes with multi-quantum well. Acta Physica Sinica, 2010, 59(2): 1258-1262. doi: 10.7498/aps.59.1258
    [15] Ren Guang-Jun, Wei Zhen, Zhang Qiang, Yao Jian-Quan. Study of Nd3+-doped polarization maintaining fiber amplifier. Acta Physica Sinica, 2009, 58(6): 3897-3902. doi: 10.7498/aps.58.3897
    [16] Zhang Lin, Han Chao, Ma Yong-Ji, Zhang Yi-Men, Zhang Yu-Ming. Gamma-ray radiation effect on Ni/4H-SiC SBD. Acta Physica Sinica, 2009, 58(4): 2737-2741. doi: 10.7498/aps.58.2737
    [17] Zhao Zhen-Yu, Duan Kai-Liang, Wang Jian-Ming, Zhao Wei, Wang Yi-Shan. Experimental study of characteristics of high power photonic crystal fiber amplifier. Acta Physica Sinica, 2008, 57(10): 6335-6339. doi: 10.7498/aps.57.6335
    [18] Qiao Hui, Liao Yi, Hu Wei-Da, Deng Yi, Yuan Yong-Gang, Zhang Qin-Yao, Li Xiang-Yang, Gong Hai-Mei. Real-time study of γ irradiation on Hg1-xCdxTe focal plane photodiodes. Acta Physica Sinica, 2008, 57(11): 7088-7093. doi: 10.7498/aps.57.7088
    [19] Cheng Cheng, Zhang Hang. A semiconductor nanocrystal PbSe quantum dot fiber amplifier. Acta Physica Sinica, 2006, 55(8): 4139-4144. doi: 10.7498/aps.55.4139
    [20] ZHANG TING-QING, LIU CHUAN-YANG, LIU JIA-LU, WANG JIAN-PING, HUANG ZHI, XU NA-JUN, HE BAO-PING, PENG HONG-LUN, YAO YU-JUAN. RADIATION EFFECTS OF MOS DEVICE AT LOW DOSE RATE AND LOW TEMPERATURE. Acta Physica Sinica, 2001, 50(12): 2434-2438. doi: 10.7498/aps.50.2434
Metrics
  • Abstract views:  693
  • PDF Downloads:  25
  • Cited By: 0
Publishing process
  • Received Date:  09 June 2024
  • Accepted Date:  18 August 2024
  • Available Online:  12 September 2024
  • Published Online:  20 October 2024

/

返回文章
返回
Baidu
map