-
Two-dimensional atomic crystals (2DACs) are the layered materials that can be exfoliated into the thickness of one unit cell, and attract extensive attention in current condensed matter physics. The atoms contained in a 2DAC are completely exposed, thus rendering them extremely sensitive to the external environment. Therefore, the exfoliation, transfer, rotation, stacking, encapsulation and device fabrication processes are particularly important for the electronic device quality and electrical transport properties of 2DACs. We review the recent progress of the transfer methods for 2DACs, especially the milestones in the improving of the transport properties of these two-dimensional electron gases (2DEGs). For electronic devices based on 2DACs, the quality of the devices is evaluated in terms of the disorder of 2DEG, contact resistance, carrier mobility, and observed quantum Hall states, and their corresponding transfer technology, device structure and fabrication processes are also discussed in detail.
-
Keywords:
- two-dimensional atomic crystals /
- transfer methods /
- two-dimensional heterostructures /
- electrical transport
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666
Google Scholar
[2] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109
Google Scholar
[3] Goerbig M O 2011 Rev. Mod. Phys. 83 1193
Google Scholar
[4] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotech. 7 699
Google Scholar
[5] Schaibley J R, Yu H, Clark G, Rivera P, Ross J S, Seyler K L, Yao W, Xu X 2016 Nat. Rev. Mater. 1 16055
Google Scholar
[6] Saito Y, Nojima T, Iwasa Y 2016 Nat. Rev. Mater. 2 16094
[7] Geim A K, Novoselov K S 2007 Nat. Mater. 6 183
Google Scholar
[8] Novoselov K S, Fal'ko V I, Colombo L, Gellert P R, Schwab M G, Kim K 2012 Nature 490 192
Google Scholar
[9] Fiori G, Bonaccorso F, Iannaccone G, et al. 2014 Nat. Nanotechnol. 9 768
Google Scholar
[10] Zhang H, Cheng H -M, Ye P D 2018 Chem. Soc. Rev. 47 6009
Google Scholar
[11] Liu X, Hersam M C 2019 Nat. Rev. Mater. 4 669
Google Scholar
[12] Akinwande D, Huyghebaert C, Wang C H, Serna M I, Goossens S, Li L J, Wong H S P, Koppens F H L 2019 Nature 573 507
Google Scholar
[13] Liu C, Chen H, Hou X, Zhang H, Han J, Jiang Y G, Zeng X, Zhang D W, Zhou P 2019 Nat. Nanotechnol. 14 662
Google Scholar
[14] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197
Google Scholar
[15] Zhang Y, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201
Google Scholar
[16] Novoselov K S, McCann E, Morozov S V, Fal’ko V I, Katsnelson M I, Zeitler U, Jiang D, Schedin F, Geim A K 2006 Nat. Phys. 2 177
Google Scholar
[17] Novoselov K S, Jiang Z, Zhang Y, Morozov S V, Stormer H L, Zeitler U, Maan J C, Boebinger G S, Kim P, Geim A K 2007 Science 315 1379
Google Scholar
[18] Katsnelson M I, Novoselov K S, Geim A K 2006 Nat. Phys. 2 620
Google Scholar
[19] Novoselov K, Jiang D, Schedin F, Booth T, Khotkevich V, Morozov S, Geim A 2005 Proc. Natl. Acad. Sci. USA 102 10451
Google Scholar
[20] Watanabe K, Taniguchi T, Kanda H 2004 Nat. Mater. 3 404
Google Scholar
[21] Lee G H, Yu Y J, Lee C, Dean C, Shepard K L, Kim P, Hone J 2011 Appl. Phys. Lett. 99 243114
Google Scholar
[22] Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805
Google Scholar
[23] Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotech. 6 147
Google Scholar
[24] Li L K, Yu Y J, Ye G J, Ge Q D, Ou X D, Wu H, Feng D L, Chen X H, Zhang Y B 2014 Nat. Nanotechnol. 9 372
Google Scholar
[25] Liu H, Neal A T, Zhu Z, Luo Z, Xu X, Tomanek D, Ye P D 2014 ACS Nano 8 4033
Google Scholar
[26] Xi X, Zhao L, Wang Z, Berger H, ForróL, Shan J, Mak K F 2015 Nat. Nanotechnol. 10 765
Google Scholar
[27] Xi X, Wang Z, Zhao W, Park J -H, Law K T, Berger H, Forró L, Shan J, Mak K F 2016 Nat. Phys. 12 139
Google Scholar
[28] Yu Y, Ma L, Cai P, Zhong R, Ye C, Shen J, Gu G D, Chen X H, Zhang Y 2019 Nature 575 156
Google Scholar
[29] Zhao S Y F, Poccia N, Panetta M G, et al. 2019 Phys. Rev. Lett. 122 247001
Google Scholar
[30] Belianinov A, He Q, Dziaugys A, Maksymovych P, Eliseev E A, Borisevich A Y, Morozovska A N, Banys J, Vysochanskii Y, Kalinin S V 2015 Nano Lett. 15 3808
Google Scholar
[31] Fei Z Y, Zhao W J, Palomaki T A, Sun B S, Miller M, Zhao Z Y, Yan J Q, Xu X D, Cobden D H 2018 Nature 560 336
Google Scholar
[32] Huang B, Clark G, Navarro-Moratalla E, et al. 2017 Nature 546 270
Google Scholar
[33] Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, Cao T, Bao W, Wang C, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J, Zhang X 2017 Nature 546 265
Google Scholar
[34] Deng Y, Yu Y, Song Y, Zhang J, Wang N Z, Sun Z, Yi Y, Wu Y Z, Wu S, Zhu J, Wang J, Chen X H, Zhang Y 2018 Nature 563 94
Google Scholar
[35] Mounet N, Gibertini M, Schwaller P, Campi D, Merkys A, Marrazzo A, Sohier T, Castelli I E, Cepellotti A, Pizzi G, Marzari N 2018 Nat. Nanotechnol. 13 246
Google Scholar
[36] Wang L, Meric I, Huang P Y, Gao Q, Gao Y, Tran H, Taniguchi T, Watanabe K, Campos L M, Muller D A, Guo J, Kim P, Hone J, Shepard K L, Dean C R 2013 Science 342 614
Google Scholar
[37] Avouris P, Heinz T F, Low T 2D Materials: Properties and Devices (Cambridge: Cambridge University Press) p220
[38] Geim A K, Grigorieva I V 2013 Nature 499 419
Google Scholar
[39] Novoselov K S, Mishchenko A, Carvalho A, Castro Neto A H 2016 Science 353 aac9439
Google Scholar
[40] Liu Y, Weiss N O, Duan X, Cheng H C, Huang Y, Duan X 2016 Nat. Rev. Mater. 1 16042
Google Scholar
[41] Iannaccone G, Bonaccorso F, Colombo L, Fiori G 2018 Nat. Nanotechnol. 13 183
Google Scholar
[42] Liu Y, Huang Y, Duan X 2019 Nature 567 323
Google Scholar
[43] Liang S J, Cheng B, Cui Xi, Miao F 2020 Adv. Mater. 32 1903800
[44] Zeng M, Xiao Y, Liu J, Yang K, Lei F 2018 Chem. Rev. 118 6236
Google Scholar
[45] Cai Z, Liu B, Zou X, Cheng H M 2018 Chem. Rev. 118 6091
Google Scholar
[46] Lin L, Deng B, Sun J, Peng H, Liu Z 2018 Chem. Rev. 118 9281
Google Scholar
[47] Li G, Zhang Y Y, Guo H, Huang L, Lu H, Lin X, Wang Y L, Du S, Gao H J 2018 Chem. Soc. Rev. 47 6073
Google Scholar
[48] Rhodes D, Chae S H, Ribeiro-Palau R, Hone J 2020 Nat. Mater. 18 541
[49] Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L, Hone J 2010 Nat. Nanotechnol. 5 722
Google Scholar
[50] 吕新宇, 李志强 2019 68 220303
Google Scholar
Lü X Y, Li Z Q 2019 Acta Phys. Sin. 68 220303
Google Scholar
[51] Yankowitz M, Ma Q, Jarillo-Herrero P, LeRoy B J 2019 Nat. Rev. Phys. 1 112
Google Scholar
[52] Balents L, Dean C R, Efetov D K, Young A F 2020 Nat. Phys. 16 725
Google Scholar
[53] 刘健鹏, 戴希 2020 69 147301
Google Scholar
Liu J P, Dai X 2020 Acta Phys. Sin. 69 147301
Google Scholar
[54] 许宏, 孟蕾, 李杨, 杨天中, 鲍丽宏, 刘国东, 赵林, 刘天生, 邢杰, 高鸿钧, 周兴江, 黄元 2018 67 218201
Google Scholar
Xu H, Meng L, Li Y, Yang T Z, Bao L H, Liu G D, Zhao L, Liu T S, Xing J, Gao H J, Zhou X J, Huang Y 2018 Acta Phys. Sin. 67 218201
Google Scholar
[55] Wang L 2014 Ph. D. Dissertation (New York: Columbia University)
[56] Lin Z, Liu Y, Halim U, Ding M, Liu Y, Wang Y, Jia C, Chen P, Duan X, Wang C, Song F, Li M, Wan C, Huang Y, Duan X 2018 Nature 562 254; Xiong F, Wang H, Liu X, Sun J, Brongersma M, Pop E, Cui Y 2015 Nano Lett. 15 6777; Zhao S Y F, Elbaz G A, Bediako D K, Yu C, Efetov D K, Guo Y, Ravichandran J, Min K A, Hong S, Taniguchi T, Watanabe K, Brus L E, Roy X, Kim P 2018 Nano Lett. 18 460
[57] Hus S M, Li A P 2017 Prog. Surf. Sci. 92 176
Google Scholar
[58] Blakea P, Hill E W, Castro Neto A H, Novoselov K S, Jiang D, Yang R, Booth T J, Geim A K 2007 Appl. Phys. Lett. 91 063124
Google Scholar
[59] Gorbachev R V, Riaz I, Nair R R, Jalil R, Britnell L, Belle B D, Hill E W, Novoselov K S, Watanabe K, Taniguchi T, Geim A K, Blake P 2011 Small 7 465
Google Scholar
[60] Hsu C, Frisenda R, Schmidt R, Arora A, de Vasconcellos S M, Bratschitsch R, van der Zant H S J, Castellanos-Gomez A 2019 Adv. Optical Mater. 7 1900239
Google Scholar
[61] Ferrari A C, Meyer J C, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K S, Roth S, Geim A K 2006 Phys. Rev. Lett. 97 187401
Google Scholar
[62] Zhang X, Qiao X F, Shi W, Wu J B, Jiang D S, Tan P H 2015 Chem. Soc. Rev. 44 2757
Google Scholar
[63] Huang Y, Sutter E, Sadowski J T, Cotlet M, Monti O L, Racke D A, Neupane M R, Wickramaratne D, Lake R K, Parkinson B A 2014 ACS Nano 8 10743
Google Scholar
[64] Desai S B, Madhvapathy S R, Amani M, Kiriya D, Hettick M, Tosun M, Zhou Y Z, Dubey M, Ager J W, Chrzan D, Javey A 2016 Adv. Mater. 28 4053
Google Scholar
[65] Huang Y, Pan Y H, Yang R, Bao L H, Meng L, Luo H L, Cai Y Q, Liu G D, Zhao W J, Zhou Z, Wu L M, Zhu Z L, Huang M, Liu L W, Liu L, Cheng P, Wu K H, Tian S B, Gu C Z, Shi Y G, Guo Y F, Cheng Z G, Hu J P, Zhao L, Yang G H, Sutter E, Sutter P, Wang Y L, Ji W, Zhou X J, Gao H J 2020 Nat. Commun. 11 2453
Google Scholar
[66] Liu F, Wu W J, Bai Y S, Chae S H, Li Q Y, Wang J, Hone J, Zhu X Y 2020 Science 367 903
Google Scholar
[67] Deng Y, Yu Y, Shi M Z, Guo Z, Xu Z, Wang J, Chen X H, Zhang Y 2020 Science 367 895
Google Scholar
[68] Frisenda R, Navarro-Moratalla E, Gant P, Perez De Lara D, Jarillo-Herrero P, Gorbachev R V, Castellanos-Gomez A 2018 Chem. Soc. Rev. 47 53
Google Scholar
[69] Fan S, Vu Q A, Tran M D, Adhikari S, Lee Y H 2020 2 D Mater. 7 022005
[70] Onodera M, Masubuchi S, Moriya R, Machida T 2020 Jpn. J. Appl. Phys. 59 010101
Google Scholar
[71] Decker R, Wang Y, Brar V W, Regan W, Tsai H Z, Wu Q, Gannett W, Zettl A, Crommie M F 2011 Nano Lett. 11 2291
Google Scholar
[72] Schneider G F, Calado V E, Zandbergen H, Vandersypen L M K, Dekker C 2010 Nano Lett. 10 1912
Google Scholar
[73] Taychatanapat T, Watanabe K, Taniguchi T, Jarillo-Herrero P 2011 Nat. Phys. 7 621
Google Scholar
[74] Uwanno T, Hattori Y, Taniguchi T, Watanabe K, Nagashio K 2015 2D Mater. 2 041002
[75] K Kinoshita, R Moriya, M Onodera, Y Wakafuji, S Masubuchi, K Watanabe, T Taniguchi, T Machida 2019 npj 2D Mater. Appl. 3 22
Google Scholar
[76] Zomer P J, Guimaraes M H D, Brant J C, Tombros N, van Wees B J 2014 Appl. Phys. Lett. 105 013101
Google Scholar
[77] Kretinin A V, Cao Y, Tu J S, Yu G L, Jalil R, Novoselov K S, Haigh S J, Gholinia A, Mishchenko A, Lozada M, Georgiou T, Woods C R, Withers F, Blake P, Eda G, Wirsig A, Hucho C, Watanabe K, Taniguchi T, Geim A K, Gorbachev R V 2014 Nano Lett. 14 3270
Google Scholar
[78] Jiang Y, Lai X, Watanabe K, Taniguchi T, Haule K, Mao J, Andrei E Y 2019 Nature 573 91
Google Scholar
[79] Yankowitz M, Xue J, Cormode D, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Jarillo-Herrero P, Jacquod P, LeRoy B J 2012 Nat. Phys. 8 382
Google Scholar
[80] Ponomarenko L A, Gorbachev R V, Yu G L, Elias D C, Jalil R, Patel A A, Mishchenko A, Mayorov A S, Woods C R, Wallbank J R, Mucha-Kruczynski M, Piot B A, Potemski M, Grigorieva I V, Novoselov K S, Guinea F, Fal’ko V I, Geim A K 2013 Nature 497 594
Google Scholar
[81] Wang L, Gao Y, Wen B, Han Z, Taniguchi T, Watanabe K, Koshino M, Hone J, Dean C R 2015 Science 350 1231
Google Scholar
[82] Kim K, Yankowitz M, Fallahazad B, Kang S, Movva H C, Huang S, Larentis S, Corbet C M, Taniguchi T, Watanabe K, Banerjee S K, LeRoy B J, Tutuc E 2016 Nano Lett. 16 1989
Google Scholar
[83] Kim K, DaSilva A, Huang S, Fallahazad B, Larentis S, Taniguchi T, Watanabe K, LeRoy B J, MacDonald A H, Tutuc E 2017 Proc. Natl. Acad. Sci. U.S.A. 114 3364
Google Scholar
[84] Martin J, Akerman N, Ulbricht G, Lohmann T, Smet J H, Von Klitzing K, Yacoby A 2008 Nat. Phys. 4 144
Google Scholar
[85] Zhang Y, Brar V W, Girit C, Zettl A, Crommie M F 2009 Nat. Phys. 5 722
Google Scholar
[86] Xue J, Sanchez-Yamagishi J, Bulmash D, Jacquod P, Deshpande A, Watanabe K, Taniguchi T, Jarillo-Herrero P, LeRoy B J 2011 Nat. Mater. 10 282
Google Scholar
[87] Chen J H, Jang C, Xiao S, Ishigami M, Fuhrer M S 2008 Nat. Nanotechnol. 3 206
Google Scholar
[88] Chen J H, Jang C, Adam S, Fuhrer M S, Williams E D, Ishigami M 2008 Nat. Phys. 4 377
Google Scholar
[89] Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer H L 2008 Solid State Commun. 146 351
Google Scholar
[90] Bolotin K I, Sikes K J, Hone J, Stormer H L. Kim P 2008 Phys. Rev. Lett. 101 096802
Google Scholar
[91] Du X, Skachko I, Barker A, Andrei E Y 2008 Nat. Nanotechnol. 3 491
Google Scholar
[92] Du X, Skachko I, Duerr F, Luican A, Andrei E Y 2009 Nature 462 192
Google Scholar
[93] Bolotin K I, Ghahari F, Shulman M D, Stormer H L, Kim P 2009 Nature 462 196
Google Scholar
[94] Dean C R, Young A F, Cadden-Zimansky P, Wang L, Ren H, Watanabe K, Taniguchi T, Kim P, Hone J, Shepard K L 2011 Nat. Phys. 7 693
Google Scholar
[95] Young A F, Dean C R, Wang L, Ren H, Cadden-Zimansky P, Watanabe K, Taniguchi T, Hone J, Shepard K L, Kim P 2012 Nat. Phys. 8 550
Google Scholar
[96] Maher P, Wang L, Gao Y, Forsythe C, Taniguchi T, Watanabe K, Abanin D, Papić Z, Cadden-Zimansky P, Hone J, Kim P, Dean C R 2014 Science 345 61
Google Scholar
[97] Li J I A, Tan C, Chen S, Zeng Y, Taniguchi T, Watanabe K, Hone J, Dean C R 2017 Science 358 648
Google Scholar
[98] Zibrov A A, Kometter C, Zhou H, Spanton E M, Taniguchi T, Watanabe K, Zaletel M P, Young A F 2017 Nature 549 360
Google Scholar
[99] Zibrov A A, Spanton E M, Zhou H, Kometter C, Taniguchi T, Watanabe K, Young A F 2018 Nat. Phys. 14 930
Google Scholar
[100] Kim Y, Balram A C, Taniguchi T, Watanabe K, Jain J K, Smet J H 2019 Nat. Phys. 15 154
Google Scholar
[101] Koulakov A A, Fogler M M, Shklovskii B I 1996 Phys. Rev. Lett. 76 499
Google Scholar
[102] Shin B G, Han G H, Yun S J, Oh H M, Bae J J, Song Y J, Park C -Y, Lee Y H 2016 Adv. Mater. 28 9378
Google Scholar
[103] Yu Z, Ong Z Y, Li S, Xu J B, Zhang G, Zhang Y W, Shi Y, Wang X 2017 Adv. Funct. Mater. 27 1604093
Google Scholar
[104] Li S L, Tsukagoshi K, Orgiu E, Samorì P 2016 Chem. Soc. Rev. 45 118
Google Scholar
[105] Kaasbjerg K, Thygesen K S, Jacobsen K W 2012 Phys. Rev. B 85 115317
Google Scholar
[106] Ma N, Jena D 2014 Phys. Rev. X 4 011043
[107] Radisavljevic B, Kis A 2013 Nat. Mater. 12 815
Google Scholar
[108] Yu Z, Ong Z Y, Pan Y, Cui Y, Xin R, Shi Y, Wang B, Wu Y, Chen T, Zhang Y W, Zhang G, Wang X 2016 Adv. Mater. 28 547
Google Scholar
[109] Cui X, Lee G H, Kim Y D, Arefe G, Huang P Y, Lee C H, Chenet D A, Zhang X, Wang L, Ye F, Pizzocchero F, Jessen B S, Watanabe K, Taniguchi T, Muller D A, Low T, Kim P, Hone J 2015 Nat. Nanotechnol. 10 534
Google Scholar
[110] Hu Z, Wu Z, Han C, He J, Ni Z, Chen W 2018 Chem. Soc. Rev. 47 3100
Google Scholar
[111] Favron A, Gaufrès E, Fossard F, Phaneuf-L’Heureux A L, Tang N Y W, Lévesque P L, Loiseau A, Leonelli R, Francoeur S, Martel R 2015 Nat. Mater. 14 826
Google Scholar
[112] Cao Y, Mishchenko A, Yu G L, Khestanova E, Rooney A P, Prestat E, Kretinin A V, Blake P, Shalom M B, C Woods, Chapman J, Balakrishnan G, Grigorieva I V, Novoselov K S, Piot B A, Potemski M, Watanabe K, Taniguchi T, Haigh S J, Geim A K, Gorbachev R V 2015 Nano Lett. 15 4914
Google Scholar
[113] Li L, Yang F, Ye G J, Zhang Z, Zhu Z, Lou W, Zhou X, Li L, Watanabe K, Taniguchi T, Chang K, Wang Y, Chen X H, Zhang Y 2016 Nat. Nanotechnol. 11 593
Google Scholar
[114] Benyamini A, Telford E J, Kennes D M, Wang D, Williams A, Watanabe K, Taniguchi T, Shahar D, Hone J, Dean C R, Millis A J, Pasupathy A N 2019 Nat. Phys. 15 947
Google Scholar
[115] Klein D R, MacNeill D, Lado J L, Soriano D, Navarro-Moratalla E, Watanabe K, Taniguchi T, Manni S, Canfield P, Fernández-Rossier J, Jarillo-Herrero P 2018 Science 360 1218
Google Scholar
[116] Bandurin D A, Tyurnina A V, Yu G L, Mishchenko A, Zolyomi V, Morozov S V, Kumar R K, Gorbachev R V, Kudrynskyi Z R, Pezzini S, Kovalyuk Z D, Zeitler U, Novoselov K S, Patane A, Eaves L, Grigorieva I V, Fal'ko V I, Geim A K, Cao Y 2017 Nat. Nanotechnol. 12 223
Google Scholar
[117] Tsen A W, Hunt B, Kim Y D, Yuan Z J, Jia S, Cava R J, Hone J, Kim P, Dean C R, Pasupathy A N 2016 Nat. Phys. 12 208
Google Scholar
[118] Cao Y, Cai K, Hu P, et al. 2019 Adv. Opt. Mater. 7 1900190
[119] Allain A, Kang J, Banerjee K, Kis A 2015 Nat. Mater. 14 1195
Google Scholar
[120] Schulman D S, Arnold A J, Das S 2018 Chem. Soc. Rev. 47 3037
Google Scholar
[121] Wang S, Yu Z, Wang X 2018 J. Semiconductors 39 124001
Google Scholar
[122] Liu K, Luo P, Han W, Yang S, Zhou S, Li H, Zhai T 2019 Sci. Bull. 64 1426
Google Scholar
[123] Kappera R, Voiry D, Yalcin S E, Branch B, Gupta G, Mohite A D, Chhowalla M 2014 Nat. Mater. 13 1128
Google Scholar
[124] Cho S, Kim S, Kim J H, Zhao J, Seok J, Keum D H, Baik J, Choe D H, Chang K J, Suenaga K, Kim S W, Lee Y H, Yang H 2015 Science 349 625
Google Scholar
[125] Lee S, Tang A, Aloni S, Wong H S 2016 Nano Lett. 16 276
Google Scholar
[126] Chen J R, Odenthal P M, Swartz A G, Floyd G C, Wen H, Luo K Y, Kawakami R K 2013 Nano Lett. 13 3106
Google Scholar
[127] Wang J, Yao Q, Huang C W, Zou X, Liao L, Chen S, Fan Z, Zhang K, Wu W, Xiao X, Jiang C, Wu W W 2016 Adv. Mater. 28 8302
Google Scholar
[128] Chen X, Wu Y, Wu Z, Han Y, Xu S, Wang L, Ye W, Han T, He Y, Cai Y, Wang N 2015 Nat. Commun. 6 7315
Google Scholar
[129] Xu S, Wu Z, Lu H, Han Y, Long G, Chen X, Han T, Ye W, Wu Y, Lin J, Shen J, Cai Y, He Y, Zhang F, Lortz R, Cheng C, Wang N 2016 2 D Mater. 3 021007
[130] Wu Z, Xu S, Lu H, Khamoshi A, Liu G B, Han T, Wu Y, Lin J, Long G, He Y, Cai Y, Yao Y, Zhang F, Wang N 2016 Nat. Commun. 7 12955
Google Scholar
[131] Liu Y, Guo J, Zhu E, Liao L, Lee S J, Ding M, Shakir I, Gambin V, Huang Y, Duan X 2018 Nature 557 696
Google Scholar
[132] Jung Y, Choi M S, Nipane A, Borah A, Kim B, Zangiabadi A, Taniguchi T, Watanabe K, Yoo W J, Hone J, Teherani J T 2019 Nat. Electron. 2 187
Google Scholar
[133] Movva H C P, Rai A, Kang S, Kim K, Fallahazad B, Taniguchi T, Watanabe K, Tutuc E, Banerjee S K 2015 ACS Nano 9 10402
Google Scholar
[134] Fallahazad B, Movva H C P, Kim K, Larentis S, Taniguchi T, Watanabe K, Banerjee S K, Tutuc E 2016 Phys. Rev. Lett. 116 086601
Google Scholar
[135] Pisoni R, Kormányos A, Brooks M, Lei Z, Back P, Eich M, Overweg H, Lee Y, Rickhaus P, Watanabe K, Taniguchi T, Imamoğlu A, Burkard G, Ihn T, Ensslin K 2018 Phys. Rev. Lett. 121 247701
Google Scholar
[136] Movva H C P, Fallahazad B, Kim K, Larentis S, Taniguchi T, Watanabe K, Banerjee S K, Tutuc E 2017 Phys. Rev. Lett. 118 247701
Google Scholar
[137] Larentis S, Movva H C P, Fallahazad B, Kim K, Behroozi A, Taniguchi T, Watanabe K, Banerjee S K, Tutuc E 2018 Phys. Rev. B 97 201407(R
Google Scholar
[138] Fatemi V, Wu S, Cao Y, Bretheau L, Gibson Q D, Watanabe K, Taniguchi T, Cava R J, Jarillo-Herrero P 2018 Science 362 926
Google Scholar
[139] Choi Y, Kang J, Jariwala D, Kang M S, Marks T J, Hersam M C, Cho J H 2016 Adv. Mater. 28 3742; Zhu J, Yang Y, Jia R, Liang Z, Zhu W, Rehman Z U, Bao L, Zhang X, Cai Y, Song L, Huang R 2018 Adv. Mater. 30 1800195
[140] Luryi S 1988 Appl. Phys. Lett. 52 501
Google Scholar
[141] Ashoori R C, Stormer H L, Weiner J S, PfeiN'er L N, Pearton S J, Baldwin K W, West K W 1992 Phys. Rev. Lett. 68 3088
Google Scholar
[142] Eisenstein J P, Pfeiffer L N, West K W 1994 Phys. Rev. B 50 1760
Google Scholar
[143] J Appenzeller, Z Chen 2008 IEEE IEDM Tech. Digest 21.1 509
[144] Xia J L, Chen F, Li J H, Tao N J 2009 Nature Nanotech. 4 505
Google Scholar
[145] Ponomarenko L A, Yang R, Gorbachev R V, Blake P, Mayorov A S, Novoselov K S, Katsnelson M I, Geim A K 2010 Phys. Rev. Lett. 105 136801
Google Scholar
[146] Shi Q, Shih E M, Gustafsson M V, Rhodes D A, Kim B, Watanabe K, Taniguchi T, Papić Z, Hone J, Dean C R 2020 Nat. Nanotechnol. 15 569
Google Scholar
[147] Yan J, Fuhrer M S 2010 Nano Lett. 10 4521
Google Scholar
[148] Zhao Y, Cadden-Zimansky P, Ghahari F, Kim P 2012 Phys. Rev. Lett. 108 106804
Google Scholar
[149] Peters E C, Giesbers A J M, Burghard M, Kern K 2014 Appl. Phys. Lett. 104 203109
Google Scholar
[150] Zhu M J, Kretinin A V, Thompson M D, Bandurin D A, Hu S, Yu G L, Birkbeck J, Mishchenko A, Vera-Marun I J, Watanabe K, Taniguchi T, Polini M, Prance J R, Novoselov K S, Geim A K, Shalom M B 2017 Nat. Commun. 8 14552
Google Scholar
[151] Polshyn H, Zhou H, Spanton E M, Taniguchi T, Watanabe K, Young A F 2018 Phys. Rev. Lett. 121 226801
Google Scholar
[152] Zeng Y, Li J I A, Dietrich S A, Ghosh O M, Watanabe K, Taniguchi T, Hone J, Dean C R 2019 Phys. Rev. Lett. 122 137701
Google Scholar
[153] Li J I A, Shi Q, Zeng Y, Watanabe K, Taniguchi T, Hone J, Dean C R 2019 Nat. Phys. 15 898
Google Scholar
[154] Nakaharai S, Williams J R, Marcus C M 2011 Phys. Rev. Lett. 107 036602
Google Scholar
[155] Kim M, Choi J H, Lee S H, Watanabe K, Taniguchi T, Jhi S H, Lee H J 2016 Nat. Phys. 12 1022
Google Scholar
[156] Zimmermann K, Jordan A, Gay F, Watanabe K, Taniguchi T, Han Z, Bouchiat V, Sellie H, Sacépé B 2017 Nat. Commun. 8 14983
Google Scholar
[157] Ribeiro-Palau R, Chen S, Zeng Y, Watanabe K, Taniguchi T, Hone J, Dean C R 2019 Nano Lett. 19 2583
Google Scholar
[158] Chen S, Ribeiro-Palau R, Yang K, Watanabe K, Taniguchi T, Hone J, Goerbig M O, Dean C R 2019 Phys. Rev. Lett. 122 026802
Google Scholar
[159] Zhou H, Polshyn H, Taniguchi T, Watanabe K, Young A F 2020 Nat. Phys. 16 154
Google Scholar
[160] Eisenstein J P, Macdonald A H 2004 Nature 432 691
Google Scholar
[161] Narozhny B N and Levchenko A 2016 Rev. Mod. Phys. 88 025003
Google Scholar
[162] Solomon P M, Price P J, Frank D J, La Tulipe D C 1989 Phys. Rev. Lett 63 2508
Google Scholar
[163] Gramila T J, Eisenstein J P, MacDonald A H, Pfeiffer L N, West K W 1991 Phys. Rev. Lett. 66 1216
Google Scholar
[164] Sivan U, Solomon P M, Shtrikman H 1992 Phys. Rev. Lett. 68 1196
Google Scholar
[165] Gorbachev R V, Geim A K, Katsnelson M I, Novoselov K S, Tudorovskiy T, Grigorieva I V, MacDonald A H, Morozov S V, Watanabe K, Taniguchi T, Ponomarenko L A 2012 Nat. Phys. 8 896
Google Scholar
[166] Kim S, Jo I, Nah J, Yao Z, Banerjee S K, Tutuc E 2011 Phys. Rev. B 83 161401(R
Google Scholar
[167] Li J I A, Taniguchi T, Watanabe K, Hone J, Levchenko A, Dean C R 2016 Phys. Rev. Lett. 117 046802
Google Scholar
[168] Liu X M, Watanabe K, Taniguchi T, Halperin B I, Kim P 2017 Nat. Phys. 13 746
Google Scholar
[169] X Liu, L Wang, K C Fong, Y Gao, P Maher, K Watanabe, T Taniguchi, J Hone, C Dean, P Kim 2017 Phys. Rev. Lett. 119 056802
Google Scholar
[170] L Esaki, R Tsu 1970 IBM J. Res. Dev. 14 61
Google Scholar
[171] Weiss D, von Klitzing K, Ploog K 1989 Europhys. Lett. 8 179
Google Scholar
[172] Ismail K, Chu W, Yen A, Antoniadis D A, Smith H I 1989 Appl. Phys. Lett. 54 460
Google Scholar
[173] Schlösser T, Ensslin K, Kotthaus J P 1996 Semicond. Sci. Tech. 11 1582
Google Scholar
[174] Albrecht C, Smet J H, von Klitzing K, Weiss D, Umansky V, Schweizer H 2001 Phys. Rev. Lett. 86 147
Google Scholar
[175] Melinte S, Berciu M, Zhou C, Tutuc E, Papadakis S J, Harrison C, De Poortere E P, Wu M, Chaikin P M, Shayegan M, Bhatt R N, Register R A 2004 Phys. Rev. Lett. 92 683
[176] Park C H, Yang L, Son Y W, Cohen M L, Louie S G 2008 Nat. Phys. 4 213
Google Scholar
[177] Forsythe C, Zhou X, Watanabe K, Taniguchi T, Pasupathy A, Moon P, Koshino M, Kim P, Dean C R 2018 Nat. Nanotechnol. 13 566
Google Scholar
[178] Li Y, Dietrich S, Forsythe C, Taniguchi T, Watanabe K, Moon P, Dean C R 2021 Nat. Nanotechnol. 16 525
Google Scholar
[179] Nam Y, Ki D K, Soler-Delgado D, Morpurgo A F 2018 Science 362 324
Google Scholar
[180] Nomura K, MacDonald A H 2006 Phys. Rev. Lett. 96 256602
Google Scholar
[181] Zarenia M, Pereira Jr J M, Farias G A, Peeters F M 2011 Phys. Rev. B 84 125451
Google Scholar
[182] Veyrat L, Déprez C, Coissard A, Li X, Gay F, Watanabe K, Taniguchi T, Han Z, Piot B A, Sellier H, Sacépé B 2020 Science 367 781
Google Scholar
[183] Konschuh S, Gmitra M, Fabian J 2010 Phys. Rev. B 82 245412
Google Scholar
[184] Min H, Hill J E, Sinitsyn N A, Sahu B R, Kleinman L, MacDonald A H 2006 Phys. Rev. B 74 165310
Google Scholar
[185] Yao Y, Ye F, Qi X L, Zhang S C, Fang Z 2007 Phys. Rev. B 75 041401(R
[186] Castro Neto A H, Guinea F 2009 Phys. Rev. Lett. 103 026804
Google Scholar
[187] Balakrishnan J, Koon G K W, Jaiswal M, Castro Neto A H, Özyilmaz B 2013 Nat. Phys. 9 284
Google Scholar
[188] Wojtaszek M, Vera-Marun I J, Maassen T, van Wees B J 2013 Phys. Rev. B 87 081402(R
Google Scholar
[189] Avsar A, Tan J Y, Taychatanapat T, Balakrishnan J, Koon G K W, Yeo Y, Lahiri J, Carvalho A, Rodin A S, O’Farrell E C T, Eda G, Castro Neto A H, Özyilmaz B 2014 Nat. Commun. 5 4875
Google Scholar
[190] Wang Z, Ki D K, Chen H, Berger H, MacDonald A H, Morpurgo A F 2015 Nat. Commun. 6 8339
Google Scholar
[191] A Dankert, S P Dash 2017 Nat. Commun. 8 16093
Google Scholar
[192] Benítez L A, Sierra J F, Torres W S, Arrighi A, Bonell F, Costache M V, Valenzuela S O 2018 Nat. Phys. 14 303
Google Scholar
[193] Avsar A, Ochoa H, Guinea F, Zyilmaz B, Vera-Marun I J 2020 Rev. Mod. Phys. 92 021003
Google Scholar
[194] Island J O, Cui X, Lewandowski C, Khoo J Y, Spanton E M, Zhou H, Rhodes D, Hone J C, Taniguchi T, Watanabe K, Levitov L S, Zaletel M P, Young A F 2019 Nature 571 85
Google Scholar
[195] Yang W, Chen G, Shi Z, Liu C C, Zhang L, Xie G, Cheng M, Wang D, Yang R, Shi D, Watanabe K, Taniguchi T, Yao Y G, Zhang Y B, Zhang G Y 2013 Nat. Mater. 12 792
Google Scholar
[196] Carr S, Fang S, Kaxiras E 2020 Nat. Rev. Mater 5 748
Google Scholar
[197] Hofstadter D R 1976 Phys. Rev. B 14 2239
Google Scholar
[198] Dean C R, Wang L, Maher P, Forsythe C, Ghahari F, Gao Y, Katoch J, Ishigami M, Moon P, Koshino M, Taniguchi T, Watanabe K, Shepard K L, Hone J, Kim P 2013 Nature 497 598
Google Scholar
[199] Hunt B, Sanchez-Yamagishi J D, Young A F, Yankowitz M, LeRoy B J, Watanabe K, Taniguchi T, Moon P, Koshino M, Jarillo-Herrero P, Ashoori R C 2013 Science 340 1427
Google Scholar
[200] Yu G L, Gorbachev R V, Tu J S, et al. 2014 Nat. Phys. 10 525
Google Scholar
[201] Kumar R K, Chen X, Auton G H, et al. 2017 Science 357 181
Google Scholar
[202] Spanton E M, Zibrov A A, Zhou H, Taniguchi T, Watanabe K, Zaletel M P, Young A F 2018 Science 360 62
Google Scholar
[203] Bistritzer R, MacDonald A H 2011 Proc. Natl. Acad. Sci. USA 108 12233
Google Scholar
[204] Suárez Morell E, Correa J D, Vargas P, Pacheco M, Barticevic Z 2010 Phys. Rev. B 82 121407
Google Scholar
[205] Moon P, Koshino M 2014 Phys. Rev. B 90 155406
Google Scholar
[206] Kennes D M, Claassen M, Xian L, Georges A, Millis A J, Hone J, Dean C R, Basov D N, Pasupathy A N, Rubio A 2021 Nat. Phys. 17 155
Google Scholar
[207] Cao Y, Luo J Y, Fatemi V, Fang S, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Jarillo-Herrero P 2016 Phys. Rev. Lett. 117 116804
Google Scholar
[208] Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C, Jarillo-Herrero P 2018 Nature 556 80
Google Scholar
[209] Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, Jarillo-Herrero P 2018 Nature 556 43
Google Scholar
[210] Chen G, Jiang L, Wu S, Lyu B, Li H, Chittari B L, Watanabe K, Taniguchi T, Shi Zh, Jung J, Zhang Y B, Wang F 2019 Nat. Phys. 15 237
Google Scholar
[211] Chen G, Sharpe A L, Gallagher P, Rosen I T, Fox E J, Jiang L, Lyu B, Li H, Watanabe K, Taniguchi T, Jung J, Shi Z, Goldhaber-Gordon D, Zhang Y, Wang F 2019 Nature 572 215
Google Scholar
[212] Chen G, Sharpe A L, Fox E J, Zhang Y H, Wang S, Jiang L, Lyu B, Li H, Watanabe K, Takashi T, Shi Z, Senthil T, Goldhaber-Gordon D, Zhang Y B, Wang F 2020 Nature 579 56
Google Scholar
[213] Burg G W, Zhu J, Taniguchi T, Watanabe K, MacDonald A H, Tutuc E 2019 Phys. Rev. Lett. 123 197702
Google Scholar
[214] Shen C, Chu Y, Wu Q, Li N, Wang S, Zhao Y, Tang J, Liu J, Tian J, Watanabe K, Taniguchi T, Yang R, Meng Z Y, Shi D, Yazyev O V, Zhang G 2020 Nat. Phys. 16 520
Google Scholar
[215] Liu X, Hao Z, Khalaf E, Lee J Y, Ronen Y, Yoo H, Haei Najafabadi D, Watanabe K, Taniguchi T, Vishwanath A, Kim P 2020 Nature 583 221
Google Scholar
[216] Cao Y, Rodan-Legrain D, Rubies-Bigorda O, Park J M, Watanabe K, Taniguchi T, Jarillo-Herrero P 2020 Nature 583 215
Google Scholar
[217] Chen S, He M, Zhang Y H, Hsieh V, Fei Z, Watanabe K, Taniguchi T, Cobden D H, Xu X, Dean C R, Yankowitz M 2020 Nat. Phys. 17 374
[218] Xu S, Ezzi M M Al, Balakrishnan N, Garcia-Ruiz A, Tsim B, Mullan C, Barrier J, Xin N, Piot B A, Taniguchi T, Watanabe K, Carvalho A, Mishchenko A, Geim A K, Fal’ko V I, Adam S, Castro Neto A H, Novoselov K S, Shi Y 2021 Nat. Phys. 17 619
Google Scholar
[219] Park J M, Cao Y, Watanabe K, Taniguchi T, Jarillo-Herrero P 2021 Nature 590 249
Google Scholar
[220] Lu X, Stepanov P, Yang W, Xie M, Aamir M A, Das I, Urgell C, Watanabe K, Taniguchi T, Zhang G, Bachtold A, MacDonald A H, Efetov D K 2019 Nature 574 653
Google Scholar
[221] Sharpe A L, Fox E J, Barnard A W, Finney J, Watanabe K, Taniguchi T, M A Kastner, Goldhaber-Gordon D 2019 Science 365 605
Google Scholar
[222] Serlin M, Tschirhart C L, Polshyn H, Zhang Y, Zhu J, Watanabe K, Taniguchi T, Balents L, Young A F 2020 Science 367 900
Google Scholar
[223] He M, Li Y, Cai J, Liu Y, Watanabe K, Taniguchi T, Xu X, Yankowitz M 2021 Nat. Phys. 17 26
Google Scholar
[224] Polshyn H, Zhu J, Kumar M A, Zhang Y, Yang F, Tschirhart C L, Serlin M, Watanabe K, Taniguchi T, MacDonald A H, Young A F 2020 Nature 588 66
Google Scholar
[225] Saito Y, Ge J, Rademaker L, Watanabe K, Taniguchi T, Abanin D A, Young A F 2021 Nat. Phys. 17 478
Google Scholar
[226] Wu F, Lovorn T, Tutuc E, Macdonald A H 2018 Phys. Rev. Lett. 121 26402
Google Scholar
[227] Wu F, Lovorn T, Tutuc E, Martin I, Macdonald A H 2019 Phys. Rev. Lett. 122 86402
Google Scholar
[228] Ruiz-Tijerina D A, Fal’Ko V I 2019 Phys. Rev. B 99 125424
Google Scholar
[229] Dagotto E 1994 Rev. Mod. Phys. 66 763
Google Scholar
[230] Scalapino D J 2012 Rev. Mod. Phys. 84 1383
Google Scholar
[231] Mazurenko A, Chiu C S, Ji G, Parsons M F, Kanász-Nagy M, Schmidt R, Grusdt F, Demler E, Greif D, Greiner M 2017 Nature 545 462
Google Scholar
[232] Tran K, Moody G, Wu F, Lu X, Choi J, Kim K, Rai A, Sanchez D A, Quan J, Singh A, Embley J, Zepeda A, Campbell M, Autry T, Taniguchi T, Watanabe K, Lu N, Banerjee S K, Silverman K L, Kim S, Tutuc E, Yang L, MacDonald A H, Li X 2019 Nature 567 71
Google Scholar
[233] Seyler K L, Rivera P, Yu H, Wilson N P, Ray E L, Mandrus D G, Yan J, Yao W, Xu X 2019 Nature 567 66
Google Scholar
[234] Jin C, Regan E C, Yan A, Iqbal Bakti Utama M, Wang D, Zhao S, Qin Y, Yang S, Zheng Z, Shi S, Watanabe K, Taniguchi T, Tongay S, Zettl A, Wang F 2019 Nature 567 76
Google Scholar
[235] Alexeev E M, Ruiz-Tijerina D A, Danovich M, Hamer M J, Terry D J, Nayak P K, Ahn S, Pak S, Lee J, Sohn J I, Molas M R, Koperski M, Watanabe K, Taniguchi T, Novoselov K S, Gorbachev R V, Shin H S, Fal'ko V I, Tartakovskii A I 2019 Nature 567 81
Google Scholar
[236] Wang Z, Rhodes D A, Watanabe K, Taniguchi T, Hone J C, Shan J, Mak K F 2019 Nature 574 76
Google Scholar
[237] Tang Y, Li L, Li T, Xu Y, Liu S, Barmak K, Watanabe K, Taniguchi T, MacDonald A H, Shan J, Mak K F 2020 Nature 579 353
Google Scholar
[238] Regan E C, Wang D, Jin C, Iqbal Bakti Utama M, Gao B, Wei X, Zhao S, Zhao W, Zhang Z, Yumigeta K, Blei M, Carlström J D, Watanabe K, Taniguchi T, Tongay S, Crommie M, Zettl A, Wang F 2020 Nature 579 359
Google Scholar
[239] Shimazaki Y, Schwartz I, Watanabe K, Taniguchi T, Kroner M, Imamoğlu A 2020 Nature 580 472
Google Scholar
[240] Xu Y, Liu S, Rhodes D A, Watanabe K, Taniguchi T, Hone J, Elser V, Mak K F, Shan Jie 2020 Nature 587 214
Google Scholar
[241] Zhang Z, Wang Y, Watanabe K, Taniguchi T, Ueno K, Tutuc E, LeRoy B J 2020 Nat. Phys. 16 1093
Google Scholar
[242] Li H, Li S, Naik M H, Xie J, Li X, Wang J, Regan E, Wang D, Zhao W, Zhao S, Kahn S, Yumigeta K, Blei M, Taniguchi T, Watanabe K, Tongay S, Zettl A, Louie S G, Wang Feng, Crommie M F 2021 Nat. Phys. 20 945
Google Scholar
[243] Shabani S, Halbertal D, Wu W, Chen M, Liu S, Hone J, Yao W, Basov D N, Zhu X, Pasupathy A N 2021 Nat. Mater. 17 720
[244] Wang L, Shih E M, Ghiotto A, et al. 2020 Nat. Mater. 19 861
Google Scholar
[245] Koren E, Leven I, Lörtscher E, Knoll A, Hod O, Urs D 2016 Nat. Nanotechnol. 11 752
Google Scholar
[246] Ribeiro-Palau R, Zhang C J, Watanabe K, Taniguchi T, Hone J and Dean C R 2018 Science 361 690
Google Scholar
[247] Finney N R, Yankowitz M, Muraleetharan L, Watanabe K, Taniguchi T, Dean C R, Hone J 2019 Nat. Nanotechnol. 14 1029
Google Scholar
[248] Yankowitz M, Jung J, Laksono E, Leconte N, Chittari B L, Watanabe K, Taniguchi T, Adam S, Graf D, Dean C R 2018 Nature 557 404
Google Scholar
[249] Yankowitz M, Chen S, Polshyn H, Zhang Y, Watanabe K, Taniguchi T, Graf D, Young A F, Dean C R 2019 Science 363 1059
Google Scholar
[250] Stepanov P, Das I, Lu X, et al. 2020 Nature 583 375
Google Scholar
[251] Liu X, Wang Z, Watanabe K, Taniguchi T, Vafek O, Li J I A 2021 Science 371 1261
Google Scholar
[252] Arora H S, Polski R, Zhang Y, Thomson A, Choi Y, Kim H, Lin Z, Wilson I Z, Xu X, Chu J- H, Watanabe K, Taniguchi T, Alicea J, Nadj-Perge S 2020 Nature 583 379
Google Scholar
[253] Lin J X, Zhang Y H, Morissette E, Wang Z, Liu S, Rhodes D, Watanabe K, Taniguchi T, Hone J, Li J I A 2021 arXiv: 2102.06566 v1
-
图 1 二维原子晶体的机械剥离及层数的快速识别 (a)石墨烯的机械剥离过程示意图, 以及具体步骤的照片((1)—(4))和样品的光学照片((5)), 其中可以看到不同层数的样品[55]; (b)石墨烯[57]和(c)h-BN[49,58]在不同厚度SiO2上(即Si/SiO2衬底), 不同波长的入射光下的光学对比度变化规律, 以及相应光学照片和原子力显微镜图片; (d) SiO2上MoS2的光学照片, 也可以看出对比度随着SiO2的厚度变化显著[59]
Figure 1. Mechanical exfoliation and rapid identification of layer number for two-dimensional atomic crystal (2DACs): (a) Schematic diagram of the mechanical exfoliation process of graphene, photos of the individual exfoliation steps ((1)–(4)) and optical images of the sample ((5)), in which flakes with different layers can be observed[55]. Optical contrast of graphene[57] (b) and h-BN[49,58] (c) on Si/SiO2 substrate with different thickness of SiO2 for the incident light with different wavelengths, and corresponding optical images and atomic force microscope (AFM) images. (d) Optical images of MoS2 on SiO2, exhibiting that optical contrast varies notably with the thickness of SiO2[59].
图 2 大尺寸二维原子晶体的剥离技术 (a)金辅助的超大面积剥离法的示意图以及利用该法制备的毫米级黑磷和三氯化钌(RuCl3)的光学照片[63]; (b)金辅助剥离后的湿法去除金薄膜的过程和大面积样品的照片[64]; (c) Al2O3辅助剥离法及器件制备过程示意图, 以及制备的Fe3GeTe2样品的光学照片和原子显微镜图片[65]
Figure 2. Exfoliation technique of large-sized 2DACs: (a) Schematic illustration of the ultra-large area Au-assisted exfoliation and optical images of millimeter-sized black phosphorus and ruthenium trichloride (RuCl3) obtained by this method[63]; (b) wet chemical removal of gold films after Au-assisted exfoliation and optical images of large-area flakes[64]; (c) schematic of Al2O3-assisted exfoliation and device fabrication process, optical images and AFM images of Fe3GeTe2 flakes[65].
图 4 (a)PMMA转移过程的具体步骤示意图以及(b)对应的光学照片[49]; (c)石墨烯在SiO2和h-BN衬底表面的形貌图和电荷密度图[71]; (d)石墨烯分别在SiO2和h-BN衬底上的转移特性曲线[49]
Figure 4. (a) Schematic of individual steps of the PMMA transfer process and (b) the corresponding optical images of the flakes taken for each step[49]; (c) topography and charge density maps of graphene on SiO2 and h-BN[71]; (d) transfer curves of graphene on SiO2 and h-BN substrates[49].
图 5 (a)聚合物基转移法导致的界面杂质及气泡的AFM图[37]; (b)利用含有气泡的叠层制备的器件光学照片, 其中将顶栅电极设计为复杂形状是为避开气泡[77]
Figure 5. (a) AFM images of interfacial impurities and bubbles resulting from polymer-based transfer process[37]; (b) optical images of the devices fabricated with stacks containing bubbles, in which the complex top gate shape was designed to avoid the bubbles[77].
图 6 (a) pick-up转移法的过程示意图; 所制备的叠层结构的(b)光学照片、(c) AFM图像和(d)截面TEM图像; (e)器件的转移特性曲线. 插图分别为器件的光学照片和低温电学输运测量结果[36]
Figure 6. (a) Schematic of the pick-up transfer process; (b) optical images, (c) AFM images and (d) cross-sectional TEM images of the obtained h-BN/graphene/h-BN stacks; (e) transfer curves of the device. The left and right insets are optical images of the device and low-temperature electrical transport measurements, respectively[36].
图 7 (a)石墨烯/h-BN莫尔超晶格的波长(黑色)和超晶格旋转角(红色)与层间转角的关系曲线, 插图为波长11.5 nm的莫尔超晶格的STM图像[79]; (b)单层石墨烯晶体边缘对应特定的晶向, 插图为石墨烯晶格模型中标示出的对应晶向[7]; (c)退火前后, h-BN/石墨烯/h-BN叠层的光学照片[81]
Figure 7. (a) Plot of the wavelength of the graphene/h-BN moiré superlattice (black) and the rotation angle of the superlattice (red) as function of the rotation angle between layers[79]. The inset represents STM image of the moiré superlattice with a wavelength of 11.5 nm. (b) edges of the monolayer graphene crystal correspond to specific crystal orientation[7]. The inset shows the corresponding crystal orientation denoted with dashed line in the lattice model. (c) optical images of h-BN/graphene/h-BN stacks before (upper penal) and after (lower penal) annealing[81].
图 8 (a)“撕裂+堆叠”法制备石墨烯莫尔超晶格的过程示意图以及相应的光学照片[82]; (b)转移台的旋转过程示意图[83]; (c)“切割+堆叠”法制备石墨烯莫尔超晶格叠层的光学照片; (d)制备的莫尔超晶格的STM图像[82]
Figure 8. (a) Schematic diagram of the preparation process of graphene moiré superlattice by “tearing + stack” method and the corresponding optical images[82]; (b) schematic of the rotating the stage (supporting the underlying graphene) during “tearing + stack” process[83]; (c) optical images of the graphene moiré superlattice prepared by “tearing + stack” method; (d) STM image of the obtained graphene/h-BN moiré superlattice[82].
图 10 (a)基于STM测量结果推导出的SiO2/Si衬底上MoS2的能带结构变化[102]; (b) SiO2/Si衬底上MoS2的迁移率随温度的变化, 插图为器件结构示意图[104]; 通过(c) h-BN封装技术[109]和(d) HfO2钝化技术[107]屏蔽外部无序后, MoS2的迁移率随温度的变化
Figure 10. (a) Variation of energy band structure of MoS2 on SiO2/Si substrate, deduced from STM measurements[102]; (b) Plots of MoS2 mobility as function of temperature on SiO2/Si substrates[104]. The inset illustrates the device structure. The mobility of MoS2 vs. temperature after screening the external disorder by (c) encapsulation with h-BN[109] and (d) passivation with HfO2[107].
图 11 h-BN封装结构用于空气敏感型二维原子晶体的电学输运、磁学及铁电极化特性的研究 (a)—(c)半导体: BP[113]; (d), (e)铁电体: WTe2[31]; (f), (g)超导体: NbSe2[114]; (h), (i)铁磁体: CrI3[32]
Figure 11. Study on the electrical transport, magnetic and ferroelectric polarization characteristics of unstable 2DACs with h-BN encapsulation: (a)−(c) semiconductor: black phosphorous[113]; (d), (e) ferroelectric: WTe2[31]; (f), (g) superconductor: NbSe2[114]; (h), (i) ferromagnet: CrI3[32].
图 12 (a)石墨烯的一维边缘接触结构的工艺示意图; (b)截面TEM图像及相应的EDS图像; (c)接触界面的原子结构示意图; (d)接触电阻与沟道长度的关系曲线[36]
Figure 12. (a) Schematic of the one-dimensional edge contact process for graphene devices; (b) cross-sectional TEM image and corresponding EDS mapping; (c) atomic structure diagram of contact interface; (d) Plot of the contact resistance as function of the channel length[36].
图 14 顶电极范德瓦耳斯接触工艺. 在MoS2表面直接沉积(a)—(c)金属电极和(d)—(f)转移金属电极形成的界面原子结构示意图、相应的界面TEM图像和转移特性曲线, 其中图(f)中的插图为不同栅压下的输出特性曲线[132]; (g)兼容h-BN封装结构的顶电极范德瓦耳斯接触结构的工艺流程示意图; (h)基于顶电极范德瓦耳斯接触的WSe2器件的输出特性曲线[114]
Figure 14. van der Waals contact between the top electrodes and TDACs. The schematic of atomic structure at the interface, the TEM images of the interface and the corresponding transfer curves of the contacts formed by (a)−(c) the direct deposition of metal electrode and (d)−(f) transferring metal electrode on the MoS2, respectively[132]. The inset in panel (f) is the output curves. (g) Schematic of the fabrication process for top electrode with van der Waals contact structure, compatible with h-BN encapsulation. (h) Output curves of WSe2 device with top electrodes[114].
图 15 底电极范德瓦耳斯接触 (a)结构和(b)工艺示意图.(c), (d)表征欧姆接触特性的I-V特性曲线[133]. 基于底电极范德瓦耳斯接触的WSe2 ((e), (f))[134], MoS2 ((g)−(i)), MoSe2 ((j), (k))和WTe2 ((l)−(n))的电学输运测量结果[135-138]
Figure 15. (a) Schematic and (b) fabrication process of van der Waals contact between bottom electrodes and WSe2[133]. (c), (d) I-V curves indicating ohmic contact. Electrical transport measurements of WSe2 (e), (f)) [134], MoS2 ((g)−(i)), MoSe2 ((j), (k)) and WTe2 ((l)−(n)) using bottom electrode contacts[135-138].
图 16 叠层器件的量子电容测试法 (a)双层石墨烯的量子电容测量示意图; (b) N = 1和N = 0朗道能级的不同填充数对应的量子电容[95]; WSe2的(c)量子电容测量结构示意图, (d)光学照片以及(e)不同填充数对应的量子电容随磁场的变化关系[146]
Figure 16. Quantum capacitance measurement of devices based on stacks: (a) Schematic of quantum capacitance measurement of bilayer graphene; (b) quantum capacitance of different filling factors of N = 1 and N = 0 Landau levels [95]; (c) schematic of quantum capacitance measurement, (d) optical image and (e) the relationship between quantum capacitance and magnetic field for various filling factors of WSe2 [146].
图 17 Corbino结构的石墨烯器件的电学输运特性 (a)金属栅极的Corbino器件的光学照片和结构示意图; (b)器件电阻随位移场的变化曲线[150]; (c)基于石墨栅极的Corbino器件的微加工过程示意图[152]; (d)双电层结构的Corbino器件的测量装置示意图; (e)纵向电导率随填充数的变化, 其中涌现出一系列符合复合费米子模型的新的分数量子霍尔态[153]
Figure 17. Electrical transport properties of Corbino devices based on graphene: (a) Schematic and optical image of the Corbino device with metal gate; (b) relationship between the resistance and displacement field[150]; (c) schematic of the fabrication process of Corbino device with top and bottom gate[152]; (d) Corbino device with the electric double layer (EDL) structure; (e) variation of the longitudinal conductivity with filling factor, in which a series of emergent fractional quantum hall states corresponding to the composite fermion model appear[153].
图 18 基于局域定义的石墨栅极研究石墨烯器件的电学输运特性 (a)局域定义的石墨顶栅器件结构示意图; (b)器件纵向电导率与局域石墨栅压关系曲线, 在N = 0和N = 1朗道能级中可以观测到大量的分数量子霍尔态[157]; (c)基于局域石墨栅极的Corbino器件的结构示意图; (d)器件的纵向电导率与局域石墨栅压的关系曲线[159]
Figure 18. Electrical transport properties of graphene devices with locally defined graphite gates[157]: (a) Locally defined graphite top gate structures and optical images; (b) Relationship between the longitudinal conductivity and the local gate voltage, and a large number of fractional quantum Hall states can be observed within the N = 0 and N = 1 Landau levels; (c) schematic of Corbino device with local graphite gates; (d) Relationship between the longitudinal conductivity and the local gate voltage[159].
图 19 零磁场下石墨烯双电层(EDL)结构的库仑拖曳效应研究利用聚合物基转移法制备的石墨烯EDL器件的 (a)示意图, (b)光学照片, (c)测量结构示意图, (d)拖拽电阻率的相图[165]; 利用pick-up转移法制备的(e)器件结构示意图以及(f)叠层结构和(g) EDL器件的光学照片; (h)拖拽电阻与两层石墨烯的朗道能级填充数的关系曲线[168]
Figure 19. Coulomb drag effect of graphene electric double layer (EDL) in zero magnetic field: (a) Schematic, (b) optical image, (c) measurement setup and phase diagram of drag resistivity of graphene EDL device prepared by polymer-based transfer method (d) [165]; (e) structure diagram, (f) optical image of the stack and (g) final EDL device fabricated by the pick-up transfer method; (h) curves of drag resistance as function of total Landau level filling factors of two layers of graphene[168].
图 20 利用介电环境及近邻效应调控石墨烯中电子基态 (a)以二维周期性介质为栅极的石墨烯叠层结构的制备工艺示意图; 周期性外部电场作用下的石墨烯的(b)STM图和(c)朗道能级扇形图[177]; (d)基于一维周期性栅介质的石墨烯叠层结构示意图; (e)石墨烯的纵向电阻率与载流子浓度和底栅电压的关系[178]; Rxx (f)
和Ryy (g) 的朗道能级扇形图; (h)基于高介电常数栅介质的叠层器件结构示意图; (i)主要狄拉克点的电阻与温度和磁场的变化关系[182]; WSe2/h-BN/WSe2叠层的(i)电容测量结构示意图和(k)器件光学照片; (l)石墨烯主要狄拉克点的量子电容与位移场和载流子浓度的关系图[194] Figure 20. Tuning the ground state of electrons in graphene by changing the dielectric environment and proximity effects: (a) Schematic of the fabrication process of graphene stack based on two-dimensional periodic gate dielectric pattern; (b) STM image and (c) Landau fan diagrams of graphene under the applied periodic electric field[177]; (d) schematic of graphene stack with one-dimensional periodic gate dielectric; (e) relationship between longitudinal resistivity and carrier concentration with periodic gate voltage in the graphene device[178]; (f), (g) the Landau fans of Rxx and Ryy, respectively; (h) schematic of the device based on a high-κ gate dielectric; (i) relationship between the resistance of main Dirac point with the temperature and magnetic field[182]; (j) schematic of capacitance measurement for WSe2/h-BN/WSe2 stack and (k) optical images of the device; (l) relationship between the quantum capacitance of the main Dirac point with the displacement field and carrier concentration[194].
图 21 石墨烯/h-BN莫尔超晶格的电学输运特性 (a) Geim课题组[77]和(b)Kim课题组[198]报道的Hofstadter蝴蝶分形能谱; (c)室温附近观测到的SdH振荡[201]; (d)实验观测到的对称破缺整数量子霍尔态(红色虚线框标识)和(e)对应的Wannier图(彩色实线标识了态密度极小值)[200]; (f), (g) t为整数和s非零的量子霍尔态[80]; (h)电容测量中观察到的t为分数和s为零的量子霍尔态[202]
Figure 21. Electrical transport properties of graphene/h-BN moiré superlattice: (a) Hofstadter butterfly fractal spectrum reported by Geim’s group[77] and (b) Kim’s group[198]; (c) SdH oscillations observed near room temperature[201]; (d) observed quantum Hall ferromagnetic states and (e) theoretically predicted Landau fan diagram[200]; (f), (g) quantum Hall state with integer t and non-zero s[80]; (h) quantum Hall state where t is a fraction and s is zero observed in the capacitance measurement[202].
图 22 石墨烯莫尔平带系统 单层-单层石墨烯莫尔超晶格(魔角双层石墨烯)器件的 (a)示意图, (b)电子相图和(c)能带结构[209]; (d), (e)魔角双层石墨烯中的轨道铁磁性[222]; 双层-双层石墨烯莫尔超晶格的(f)器件结构和晶格结构示意图以及(g)电阻率随位移场的变化关系图[215]; ABC三层石墨烯/h-BN莫尔超晶格器件的(h)结构示意图和(i)纵向电阻率随位移场的变化关系图, 其中插图为器件的光学照片[212]; 转角三层石墨烯莫尔超晶格的(j)器件结构示意图和(k)纵向电阻率随位移场和莫尔单胞填充数的变化关系图[219]
Figure 22. Graphene moiré flat band system: (a) Schematic, (b) electronic phase diagram and (c) energy band structure of a monolayer-monolayer graphene moiré superlattice (magic-angle twisted bilayer graphene, MATBG) device[209]; (d), (e) orbital ferromagnetism in MATBG[222]; (f) schematic of device geometry and (g) relationship between the resistivity and the displacement field of the twisted bilayer-bilayer graphene (twisted double bilayer graphene, TDBG) moiré superlattice[215]; (h) schematic and (i) relationship between the longitudinal resistivity and the displacement field of the ABC trilayer graphene/h-BN moiré superlattice device. The inset in panel (i) is the corresponding optical image[212]. (j) Schematic of device structure and (k) relationship of the longitudinal resistivity with the displacement field and the filling factors of the moiré unit cell of the twisted trilayer graphene moiré superlattice[219].
图 23 转角WSe2器件中的电子关联态[241]底电极接触的器件 (a)结构示意图和(b)光学照片; (c)零磁场时, 不同转角的器件的纵向电阻随载流子浓度的变化关系图, 重点标示了其中的半填充电子态的电阻; (d)转角WSe2器件的电子相图
Figure 23. Correlated electronic states in a twisted WSe2 device[241]: (a) Schematic and (b) optical image of the device with bottom electrode; (c) curves of the longitudinal resistance vs. the carrier concentration for devices with different twisted angles under zero magnetic field. The resistance of the half-filling state is marked. (d) The phase diagram of the twisted WSe2 device.
图 24 (a)利用AFM针尖原位调控石墨烯/h-BN莫尔超晶格的装置示意图; (b)—(d)不同转动时, 叠层结构的AFM图像[246]; (e)石墨烯的次级狄拉克点随原位转角的变化关系;石墨烯/h-BN莫尔超晶格的静压力测试(f)装置和原理示意图及(g)装置照片[248]; (h)主要狄拉克点和次级狄拉克点的带隙随压力的变化; (i)魔角石墨烯器件的结构示意图; (j)莫尔原胞半填充处的关联绝缘态随压力的变化; (k)有(蓝色曲线)/无(灰色曲线)静压的情况下, 器件的纵向电导率随载流子浓度及相应莫尔单胞填充数的变化曲线[249]
Figure 24. (a)Schematic of the graphene/h-BN moiré superlattice in situ controlled by AFM tip; (b)−(d) AFM images of the stack with different twisted angels[246]; (e) relationship between the secondary Dirac point of graphene and the in situ controllable twisted angles[248]; (f) top, cartoon of the piston-cylinder pressure cell. Bottom, schematic of the graphene stack under ambient and high pressure. (g) optical images of the device; (h) bandgaps as a function of pressure; (i) schematic of the magic angle graphene device[249]; (j) plots of the conductance (left penal) and resistance (right penal) of the half-filling states as function the pressure; (k) dependence of longitudinal conductivity on the carrier concentration and the corresponding filling factors of the moiré unit cell with (blue curve) and without (grey curve) high pressure.
图 25 转角石墨烯器件中关联电子态的外部调控 (a)通过调控叠层结构中魔角石墨烯和石墨栅极之间的h-BN的厚度调控系统中电子相互作用; (b)随着库仑屏蔽作用的增强, 关联绝缘体逐渐淬灭[250]. (c)利用Bernal双层石墨烯调控魔角石墨烯的器件结构示意图; (d)在不同的双层石墨烯载流子浓度下, ν = 2填充对应的电导随温度变化曲线及(e)能隙随双层石墨烯载流子浓度的变化曲线[251]; (f)魔角石墨烯/单层WSe2叠层结构示意图; (g)—(i)三个非魔角的转角石墨烯器件中的超导转变; (j)利用单层WSe2的近邻效应调控魔角石墨烯的器件结构示意图[252]; (k)器件的横向电阻和纵向电阻随载流子浓度及相应朗道能级填充数的变化曲线; (l) ν = 1和(m) ν = 2填充对应的电子态的轨道磁性测量结果[253]
Figure 25. Tuning of interaction between electrons in twisted graphene devices: (a) Interaction between electrons can be tuned by adjusting the thickness of the h-BN between the MATBG and the graphite gate in the stack; (b) with enhancing the Coulomb screening effect, the correlated insulator phase is quenched[250]. (c) Schematic of the device utilizing Bernal bilayer graphene to tune MATBG; (d) under different carrier concentration in Bernal bilayer graphene, plots of the conductance corresponding to ν = 2 filling vs. temperature and (e) energy gap vs. carrier concentration in bilayer graphene[251]; (f) schematic of MATBG/monolayer WSe2 stack; (g)−(i) superconducting transition observed in the three twisted devices with non-magic angles[252]; (j) schematic of the device to tune the MATBG using the proximity effect of monolayer WSe2; (k) curves of the transverse (upper curve) and longitudinal (lower curve) resistance vs. the carrier concentration (the filling factor of the Landau level). Orbital magnetic measurement of the electron states corresponding to (l) ν = 1 and (m) ν = 2 filling[253].
-
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666
Google Scholar
[2] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109
Google Scholar
[3] Goerbig M O 2011 Rev. Mod. Phys. 83 1193
Google Scholar
[4] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotech. 7 699
Google Scholar
[5] Schaibley J R, Yu H, Clark G, Rivera P, Ross J S, Seyler K L, Yao W, Xu X 2016 Nat. Rev. Mater. 1 16055
Google Scholar
[6] Saito Y, Nojima T, Iwasa Y 2016 Nat. Rev. Mater. 2 16094
[7] Geim A K, Novoselov K S 2007 Nat. Mater. 6 183
Google Scholar
[8] Novoselov K S, Fal'ko V I, Colombo L, Gellert P R, Schwab M G, Kim K 2012 Nature 490 192
Google Scholar
[9] Fiori G, Bonaccorso F, Iannaccone G, et al. 2014 Nat. Nanotechnol. 9 768
Google Scholar
[10] Zhang H, Cheng H -M, Ye P D 2018 Chem. Soc. Rev. 47 6009
Google Scholar
[11] Liu X, Hersam M C 2019 Nat. Rev. Mater. 4 669
Google Scholar
[12] Akinwande D, Huyghebaert C, Wang C H, Serna M I, Goossens S, Li L J, Wong H S P, Koppens F H L 2019 Nature 573 507
Google Scholar
[13] Liu C, Chen H, Hou X, Zhang H, Han J, Jiang Y G, Zeng X, Zhang D W, Zhou P 2019 Nat. Nanotechnol. 14 662
Google Scholar
[14] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197
Google Scholar
[15] Zhang Y, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201
Google Scholar
[16] Novoselov K S, McCann E, Morozov S V, Fal’ko V I, Katsnelson M I, Zeitler U, Jiang D, Schedin F, Geim A K 2006 Nat. Phys. 2 177
Google Scholar
[17] Novoselov K S, Jiang Z, Zhang Y, Morozov S V, Stormer H L, Zeitler U, Maan J C, Boebinger G S, Kim P, Geim A K 2007 Science 315 1379
Google Scholar
[18] Katsnelson M I, Novoselov K S, Geim A K 2006 Nat. Phys. 2 620
Google Scholar
[19] Novoselov K, Jiang D, Schedin F, Booth T, Khotkevich V, Morozov S, Geim A 2005 Proc. Natl. Acad. Sci. USA 102 10451
Google Scholar
[20] Watanabe K, Taniguchi T, Kanda H 2004 Nat. Mater. 3 404
Google Scholar
[21] Lee G H, Yu Y J, Lee C, Dean C, Shepard K L, Kim P, Hone J 2011 Appl. Phys. Lett. 99 243114
Google Scholar
[22] Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805
Google Scholar
[23] Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotech. 6 147
Google Scholar
[24] Li L K, Yu Y J, Ye G J, Ge Q D, Ou X D, Wu H, Feng D L, Chen X H, Zhang Y B 2014 Nat. Nanotechnol. 9 372
Google Scholar
[25] Liu H, Neal A T, Zhu Z, Luo Z, Xu X, Tomanek D, Ye P D 2014 ACS Nano 8 4033
Google Scholar
[26] Xi X, Zhao L, Wang Z, Berger H, ForróL, Shan J, Mak K F 2015 Nat. Nanotechnol. 10 765
Google Scholar
[27] Xi X, Wang Z, Zhao W, Park J -H, Law K T, Berger H, Forró L, Shan J, Mak K F 2016 Nat. Phys. 12 139
Google Scholar
[28] Yu Y, Ma L, Cai P, Zhong R, Ye C, Shen J, Gu G D, Chen X H, Zhang Y 2019 Nature 575 156
Google Scholar
[29] Zhao S Y F, Poccia N, Panetta M G, et al. 2019 Phys. Rev. Lett. 122 247001
Google Scholar
[30] Belianinov A, He Q, Dziaugys A, Maksymovych P, Eliseev E A, Borisevich A Y, Morozovska A N, Banys J, Vysochanskii Y, Kalinin S V 2015 Nano Lett. 15 3808
Google Scholar
[31] Fei Z Y, Zhao W J, Palomaki T A, Sun B S, Miller M, Zhao Z Y, Yan J Q, Xu X D, Cobden D H 2018 Nature 560 336
Google Scholar
[32] Huang B, Clark G, Navarro-Moratalla E, et al. 2017 Nature 546 270
Google Scholar
[33] Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, Cao T, Bao W, Wang C, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J, Zhang X 2017 Nature 546 265
Google Scholar
[34] Deng Y, Yu Y, Song Y, Zhang J, Wang N Z, Sun Z, Yi Y, Wu Y Z, Wu S, Zhu J, Wang J, Chen X H, Zhang Y 2018 Nature 563 94
Google Scholar
[35] Mounet N, Gibertini M, Schwaller P, Campi D, Merkys A, Marrazzo A, Sohier T, Castelli I E, Cepellotti A, Pizzi G, Marzari N 2018 Nat. Nanotechnol. 13 246
Google Scholar
[36] Wang L, Meric I, Huang P Y, Gao Q, Gao Y, Tran H, Taniguchi T, Watanabe K, Campos L M, Muller D A, Guo J, Kim P, Hone J, Shepard K L, Dean C R 2013 Science 342 614
Google Scholar
[37] Avouris P, Heinz T F, Low T 2D Materials: Properties and Devices (Cambridge: Cambridge University Press) p220
[38] Geim A K, Grigorieva I V 2013 Nature 499 419
Google Scholar
[39] Novoselov K S, Mishchenko A, Carvalho A, Castro Neto A H 2016 Science 353 aac9439
Google Scholar
[40] Liu Y, Weiss N O, Duan X, Cheng H C, Huang Y, Duan X 2016 Nat. Rev. Mater. 1 16042
Google Scholar
[41] Iannaccone G, Bonaccorso F, Colombo L, Fiori G 2018 Nat. Nanotechnol. 13 183
Google Scholar
[42] Liu Y, Huang Y, Duan X 2019 Nature 567 323
Google Scholar
[43] Liang S J, Cheng B, Cui Xi, Miao F 2020 Adv. Mater. 32 1903800
[44] Zeng M, Xiao Y, Liu J, Yang K, Lei F 2018 Chem. Rev. 118 6236
Google Scholar
[45] Cai Z, Liu B, Zou X, Cheng H M 2018 Chem. Rev. 118 6091
Google Scholar
[46] Lin L, Deng B, Sun J, Peng H, Liu Z 2018 Chem. Rev. 118 9281
Google Scholar
[47] Li G, Zhang Y Y, Guo H, Huang L, Lu H, Lin X, Wang Y L, Du S, Gao H J 2018 Chem. Soc. Rev. 47 6073
Google Scholar
[48] Rhodes D, Chae S H, Ribeiro-Palau R, Hone J 2020 Nat. Mater. 18 541
[49] Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L, Hone J 2010 Nat. Nanotechnol. 5 722
Google Scholar
[50] 吕新宇, 李志强 2019 68 220303
Google Scholar
Lü X Y, Li Z Q 2019 Acta Phys. Sin. 68 220303
Google Scholar
[51] Yankowitz M, Ma Q, Jarillo-Herrero P, LeRoy B J 2019 Nat. Rev. Phys. 1 112
Google Scholar
[52] Balents L, Dean C R, Efetov D K, Young A F 2020 Nat. Phys. 16 725
Google Scholar
[53] 刘健鹏, 戴希 2020 69 147301
Google Scholar
Liu J P, Dai X 2020 Acta Phys. Sin. 69 147301
Google Scholar
[54] 许宏, 孟蕾, 李杨, 杨天中, 鲍丽宏, 刘国东, 赵林, 刘天生, 邢杰, 高鸿钧, 周兴江, 黄元 2018 67 218201
Google Scholar
Xu H, Meng L, Li Y, Yang T Z, Bao L H, Liu G D, Zhao L, Liu T S, Xing J, Gao H J, Zhou X J, Huang Y 2018 Acta Phys. Sin. 67 218201
Google Scholar
[55] Wang L 2014 Ph. D. Dissertation (New York: Columbia University)
[56] Lin Z, Liu Y, Halim U, Ding M, Liu Y, Wang Y, Jia C, Chen P, Duan X, Wang C, Song F, Li M, Wan C, Huang Y, Duan X 2018 Nature 562 254; Xiong F, Wang H, Liu X, Sun J, Brongersma M, Pop E, Cui Y 2015 Nano Lett. 15 6777; Zhao S Y F, Elbaz G A, Bediako D K, Yu C, Efetov D K, Guo Y, Ravichandran J, Min K A, Hong S, Taniguchi T, Watanabe K, Brus L E, Roy X, Kim P 2018 Nano Lett. 18 460
[57] Hus S M, Li A P 2017 Prog. Surf. Sci. 92 176
Google Scholar
[58] Blakea P, Hill E W, Castro Neto A H, Novoselov K S, Jiang D, Yang R, Booth T J, Geim A K 2007 Appl. Phys. Lett. 91 063124
Google Scholar
[59] Gorbachev R V, Riaz I, Nair R R, Jalil R, Britnell L, Belle B D, Hill E W, Novoselov K S, Watanabe K, Taniguchi T, Geim A K, Blake P 2011 Small 7 465
Google Scholar
[60] Hsu C, Frisenda R, Schmidt R, Arora A, de Vasconcellos S M, Bratschitsch R, van der Zant H S J, Castellanos-Gomez A 2019 Adv. Optical Mater. 7 1900239
Google Scholar
[61] Ferrari A C, Meyer J C, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K S, Roth S, Geim A K 2006 Phys. Rev. Lett. 97 187401
Google Scholar
[62] Zhang X, Qiao X F, Shi W, Wu J B, Jiang D S, Tan P H 2015 Chem. Soc. Rev. 44 2757
Google Scholar
[63] Huang Y, Sutter E, Sadowski J T, Cotlet M, Monti O L, Racke D A, Neupane M R, Wickramaratne D, Lake R K, Parkinson B A 2014 ACS Nano 8 10743
Google Scholar
[64] Desai S B, Madhvapathy S R, Amani M, Kiriya D, Hettick M, Tosun M, Zhou Y Z, Dubey M, Ager J W, Chrzan D, Javey A 2016 Adv. Mater. 28 4053
Google Scholar
[65] Huang Y, Pan Y H, Yang R, Bao L H, Meng L, Luo H L, Cai Y Q, Liu G D, Zhao W J, Zhou Z, Wu L M, Zhu Z L, Huang M, Liu L W, Liu L, Cheng P, Wu K H, Tian S B, Gu C Z, Shi Y G, Guo Y F, Cheng Z G, Hu J P, Zhao L, Yang G H, Sutter E, Sutter P, Wang Y L, Ji W, Zhou X J, Gao H J 2020 Nat. Commun. 11 2453
Google Scholar
[66] Liu F, Wu W J, Bai Y S, Chae S H, Li Q Y, Wang J, Hone J, Zhu X Y 2020 Science 367 903
Google Scholar
[67] Deng Y, Yu Y, Shi M Z, Guo Z, Xu Z, Wang J, Chen X H, Zhang Y 2020 Science 367 895
Google Scholar
[68] Frisenda R, Navarro-Moratalla E, Gant P, Perez De Lara D, Jarillo-Herrero P, Gorbachev R V, Castellanos-Gomez A 2018 Chem. Soc. Rev. 47 53
Google Scholar
[69] Fan S, Vu Q A, Tran M D, Adhikari S, Lee Y H 2020 2 D Mater. 7 022005
[70] Onodera M, Masubuchi S, Moriya R, Machida T 2020 Jpn. J. Appl. Phys. 59 010101
Google Scholar
[71] Decker R, Wang Y, Brar V W, Regan W, Tsai H Z, Wu Q, Gannett W, Zettl A, Crommie M F 2011 Nano Lett. 11 2291
Google Scholar
[72] Schneider G F, Calado V E, Zandbergen H, Vandersypen L M K, Dekker C 2010 Nano Lett. 10 1912
Google Scholar
[73] Taychatanapat T, Watanabe K, Taniguchi T, Jarillo-Herrero P 2011 Nat. Phys. 7 621
Google Scholar
[74] Uwanno T, Hattori Y, Taniguchi T, Watanabe K, Nagashio K 2015 2D Mater. 2 041002
[75] K Kinoshita, R Moriya, M Onodera, Y Wakafuji, S Masubuchi, K Watanabe, T Taniguchi, T Machida 2019 npj 2D Mater. Appl. 3 22
Google Scholar
[76] Zomer P J, Guimaraes M H D, Brant J C, Tombros N, van Wees B J 2014 Appl. Phys. Lett. 105 013101
Google Scholar
[77] Kretinin A V, Cao Y, Tu J S, Yu G L, Jalil R, Novoselov K S, Haigh S J, Gholinia A, Mishchenko A, Lozada M, Georgiou T, Woods C R, Withers F, Blake P, Eda G, Wirsig A, Hucho C, Watanabe K, Taniguchi T, Geim A K, Gorbachev R V 2014 Nano Lett. 14 3270
Google Scholar
[78] Jiang Y, Lai X, Watanabe K, Taniguchi T, Haule K, Mao J, Andrei E Y 2019 Nature 573 91
Google Scholar
[79] Yankowitz M, Xue J, Cormode D, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Jarillo-Herrero P, Jacquod P, LeRoy B J 2012 Nat. Phys. 8 382
Google Scholar
[80] Ponomarenko L A, Gorbachev R V, Yu G L, Elias D C, Jalil R, Patel A A, Mishchenko A, Mayorov A S, Woods C R, Wallbank J R, Mucha-Kruczynski M, Piot B A, Potemski M, Grigorieva I V, Novoselov K S, Guinea F, Fal’ko V I, Geim A K 2013 Nature 497 594
Google Scholar
[81] Wang L, Gao Y, Wen B, Han Z, Taniguchi T, Watanabe K, Koshino M, Hone J, Dean C R 2015 Science 350 1231
Google Scholar
[82] Kim K, Yankowitz M, Fallahazad B, Kang S, Movva H C, Huang S, Larentis S, Corbet C M, Taniguchi T, Watanabe K, Banerjee S K, LeRoy B J, Tutuc E 2016 Nano Lett. 16 1989
Google Scholar
[83] Kim K, DaSilva A, Huang S, Fallahazad B, Larentis S, Taniguchi T, Watanabe K, LeRoy B J, MacDonald A H, Tutuc E 2017 Proc. Natl. Acad. Sci. U.S.A. 114 3364
Google Scholar
[84] Martin J, Akerman N, Ulbricht G, Lohmann T, Smet J H, Von Klitzing K, Yacoby A 2008 Nat. Phys. 4 144
Google Scholar
[85] Zhang Y, Brar V W, Girit C, Zettl A, Crommie M F 2009 Nat. Phys. 5 722
Google Scholar
[86] Xue J, Sanchez-Yamagishi J, Bulmash D, Jacquod P, Deshpande A, Watanabe K, Taniguchi T, Jarillo-Herrero P, LeRoy B J 2011 Nat. Mater. 10 282
Google Scholar
[87] Chen J H, Jang C, Xiao S, Ishigami M, Fuhrer M S 2008 Nat. Nanotechnol. 3 206
Google Scholar
[88] Chen J H, Jang C, Adam S, Fuhrer M S, Williams E D, Ishigami M 2008 Nat. Phys. 4 377
Google Scholar
[89] Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer H L 2008 Solid State Commun. 146 351
Google Scholar
[90] Bolotin K I, Sikes K J, Hone J, Stormer H L. Kim P 2008 Phys. Rev. Lett. 101 096802
Google Scholar
[91] Du X, Skachko I, Barker A, Andrei E Y 2008 Nat. Nanotechnol. 3 491
Google Scholar
[92] Du X, Skachko I, Duerr F, Luican A, Andrei E Y 2009 Nature 462 192
Google Scholar
[93] Bolotin K I, Ghahari F, Shulman M D, Stormer H L, Kim P 2009 Nature 462 196
Google Scholar
[94] Dean C R, Young A F, Cadden-Zimansky P, Wang L, Ren H, Watanabe K, Taniguchi T, Kim P, Hone J, Shepard K L 2011 Nat. Phys. 7 693
Google Scholar
[95] Young A F, Dean C R, Wang L, Ren H, Cadden-Zimansky P, Watanabe K, Taniguchi T, Hone J, Shepard K L, Kim P 2012 Nat. Phys. 8 550
Google Scholar
[96] Maher P, Wang L, Gao Y, Forsythe C, Taniguchi T, Watanabe K, Abanin D, Papić Z, Cadden-Zimansky P, Hone J, Kim P, Dean C R 2014 Science 345 61
Google Scholar
[97] Li J I A, Tan C, Chen S, Zeng Y, Taniguchi T, Watanabe K, Hone J, Dean C R 2017 Science 358 648
Google Scholar
[98] Zibrov A A, Kometter C, Zhou H, Spanton E M, Taniguchi T, Watanabe K, Zaletel M P, Young A F 2017 Nature 549 360
Google Scholar
[99] Zibrov A A, Spanton E M, Zhou H, Kometter C, Taniguchi T, Watanabe K, Young A F 2018 Nat. Phys. 14 930
Google Scholar
[100] Kim Y, Balram A C, Taniguchi T, Watanabe K, Jain J K, Smet J H 2019 Nat. Phys. 15 154
Google Scholar
[101] Koulakov A A, Fogler M M, Shklovskii B I 1996 Phys. Rev. Lett. 76 499
Google Scholar
[102] Shin B G, Han G H, Yun S J, Oh H M, Bae J J, Song Y J, Park C -Y, Lee Y H 2016 Adv. Mater. 28 9378
Google Scholar
[103] Yu Z, Ong Z Y, Li S, Xu J B, Zhang G, Zhang Y W, Shi Y, Wang X 2017 Adv. Funct. Mater. 27 1604093
Google Scholar
[104] Li S L, Tsukagoshi K, Orgiu E, Samorì P 2016 Chem. Soc. Rev. 45 118
Google Scholar
[105] Kaasbjerg K, Thygesen K S, Jacobsen K W 2012 Phys. Rev. B 85 115317
Google Scholar
[106] Ma N, Jena D 2014 Phys. Rev. X 4 011043
[107] Radisavljevic B, Kis A 2013 Nat. Mater. 12 815
Google Scholar
[108] Yu Z, Ong Z Y, Pan Y, Cui Y, Xin R, Shi Y, Wang B, Wu Y, Chen T, Zhang Y W, Zhang G, Wang X 2016 Adv. Mater. 28 547
Google Scholar
[109] Cui X, Lee G H, Kim Y D, Arefe G, Huang P Y, Lee C H, Chenet D A, Zhang X, Wang L, Ye F, Pizzocchero F, Jessen B S, Watanabe K, Taniguchi T, Muller D A, Low T, Kim P, Hone J 2015 Nat. Nanotechnol. 10 534
Google Scholar
[110] Hu Z, Wu Z, Han C, He J, Ni Z, Chen W 2018 Chem. Soc. Rev. 47 3100
Google Scholar
[111] Favron A, Gaufrès E, Fossard F, Phaneuf-L’Heureux A L, Tang N Y W, Lévesque P L, Loiseau A, Leonelli R, Francoeur S, Martel R 2015 Nat. Mater. 14 826
Google Scholar
[112] Cao Y, Mishchenko A, Yu G L, Khestanova E, Rooney A P, Prestat E, Kretinin A V, Blake P, Shalom M B, C Woods, Chapman J, Balakrishnan G, Grigorieva I V, Novoselov K S, Piot B A, Potemski M, Watanabe K, Taniguchi T, Haigh S J, Geim A K, Gorbachev R V 2015 Nano Lett. 15 4914
Google Scholar
[113] Li L, Yang F, Ye G J, Zhang Z, Zhu Z, Lou W, Zhou X, Li L, Watanabe K, Taniguchi T, Chang K, Wang Y, Chen X H, Zhang Y 2016 Nat. Nanotechnol. 11 593
Google Scholar
[114] Benyamini A, Telford E J, Kennes D M, Wang D, Williams A, Watanabe K, Taniguchi T, Shahar D, Hone J, Dean C R, Millis A J, Pasupathy A N 2019 Nat. Phys. 15 947
Google Scholar
[115] Klein D R, MacNeill D, Lado J L, Soriano D, Navarro-Moratalla E, Watanabe K, Taniguchi T, Manni S, Canfield P, Fernández-Rossier J, Jarillo-Herrero P 2018 Science 360 1218
Google Scholar
[116] Bandurin D A, Tyurnina A V, Yu G L, Mishchenko A, Zolyomi V, Morozov S V, Kumar R K, Gorbachev R V, Kudrynskyi Z R, Pezzini S, Kovalyuk Z D, Zeitler U, Novoselov K S, Patane A, Eaves L, Grigorieva I V, Fal'ko V I, Geim A K, Cao Y 2017 Nat. Nanotechnol. 12 223
Google Scholar
[117] Tsen A W, Hunt B, Kim Y D, Yuan Z J, Jia S, Cava R J, Hone J, Kim P, Dean C R, Pasupathy A N 2016 Nat. Phys. 12 208
Google Scholar
[118] Cao Y, Cai K, Hu P, et al. 2019 Adv. Opt. Mater. 7 1900190
[119] Allain A, Kang J, Banerjee K, Kis A 2015 Nat. Mater. 14 1195
Google Scholar
[120] Schulman D S, Arnold A J, Das S 2018 Chem. Soc. Rev. 47 3037
Google Scholar
[121] Wang S, Yu Z, Wang X 2018 J. Semiconductors 39 124001
Google Scholar
[122] Liu K, Luo P, Han W, Yang S, Zhou S, Li H, Zhai T 2019 Sci. Bull. 64 1426
Google Scholar
[123] Kappera R, Voiry D, Yalcin S E, Branch B, Gupta G, Mohite A D, Chhowalla M 2014 Nat. Mater. 13 1128
Google Scholar
[124] Cho S, Kim S, Kim J H, Zhao J, Seok J, Keum D H, Baik J, Choe D H, Chang K J, Suenaga K, Kim S W, Lee Y H, Yang H 2015 Science 349 625
Google Scholar
[125] Lee S, Tang A, Aloni S, Wong H S 2016 Nano Lett. 16 276
Google Scholar
[126] Chen J R, Odenthal P M, Swartz A G, Floyd G C, Wen H, Luo K Y, Kawakami R K 2013 Nano Lett. 13 3106
Google Scholar
[127] Wang J, Yao Q, Huang C W, Zou X, Liao L, Chen S, Fan Z, Zhang K, Wu W, Xiao X, Jiang C, Wu W W 2016 Adv. Mater. 28 8302
Google Scholar
[128] Chen X, Wu Y, Wu Z, Han Y, Xu S, Wang L, Ye W, Han T, He Y, Cai Y, Wang N 2015 Nat. Commun. 6 7315
Google Scholar
[129] Xu S, Wu Z, Lu H, Han Y, Long G, Chen X, Han T, Ye W, Wu Y, Lin J, Shen J, Cai Y, He Y, Zhang F, Lortz R, Cheng C, Wang N 2016 2 D Mater. 3 021007
[130] Wu Z, Xu S, Lu H, Khamoshi A, Liu G B, Han T, Wu Y, Lin J, Long G, He Y, Cai Y, Yao Y, Zhang F, Wang N 2016 Nat. Commun. 7 12955
Google Scholar
[131] Liu Y, Guo J, Zhu E, Liao L, Lee S J, Ding M, Shakir I, Gambin V, Huang Y, Duan X 2018 Nature 557 696
Google Scholar
[132] Jung Y, Choi M S, Nipane A, Borah A, Kim B, Zangiabadi A, Taniguchi T, Watanabe K, Yoo W J, Hone J, Teherani J T 2019 Nat. Electron. 2 187
Google Scholar
[133] Movva H C P, Rai A, Kang S, Kim K, Fallahazad B, Taniguchi T, Watanabe K, Tutuc E, Banerjee S K 2015 ACS Nano 9 10402
Google Scholar
[134] Fallahazad B, Movva H C P, Kim K, Larentis S, Taniguchi T, Watanabe K, Banerjee S K, Tutuc E 2016 Phys. Rev. Lett. 116 086601
Google Scholar
[135] Pisoni R, Kormányos A, Brooks M, Lei Z, Back P, Eich M, Overweg H, Lee Y, Rickhaus P, Watanabe K, Taniguchi T, Imamoğlu A, Burkard G, Ihn T, Ensslin K 2018 Phys. Rev. Lett. 121 247701
Google Scholar
[136] Movva H C P, Fallahazad B, Kim K, Larentis S, Taniguchi T, Watanabe K, Banerjee S K, Tutuc E 2017 Phys. Rev. Lett. 118 247701
Google Scholar
[137] Larentis S, Movva H C P, Fallahazad B, Kim K, Behroozi A, Taniguchi T, Watanabe K, Banerjee S K, Tutuc E 2018 Phys. Rev. B 97 201407(R
Google Scholar
[138] Fatemi V, Wu S, Cao Y, Bretheau L, Gibson Q D, Watanabe K, Taniguchi T, Cava R J, Jarillo-Herrero P 2018 Science 362 926
Google Scholar
[139] Choi Y, Kang J, Jariwala D, Kang M S, Marks T J, Hersam M C, Cho J H 2016 Adv. Mater. 28 3742; Zhu J, Yang Y, Jia R, Liang Z, Zhu W, Rehman Z U, Bao L, Zhang X, Cai Y, Song L, Huang R 2018 Adv. Mater. 30 1800195
[140] Luryi S 1988 Appl. Phys. Lett. 52 501
Google Scholar
[141] Ashoori R C, Stormer H L, Weiner J S, PfeiN'er L N, Pearton S J, Baldwin K W, West K W 1992 Phys. Rev. Lett. 68 3088
Google Scholar
[142] Eisenstein J P, Pfeiffer L N, West K W 1994 Phys. Rev. B 50 1760
Google Scholar
[143] J Appenzeller, Z Chen 2008 IEEE IEDM Tech. Digest 21.1 509
[144] Xia J L, Chen F, Li J H, Tao N J 2009 Nature Nanotech. 4 505
Google Scholar
[145] Ponomarenko L A, Yang R, Gorbachev R V, Blake P, Mayorov A S, Novoselov K S, Katsnelson M I, Geim A K 2010 Phys. Rev. Lett. 105 136801
Google Scholar
[146] Shi Q, Shih E M, Gustafsson M V, Rhodes D A, Kim B, Watanabe K, Taniguchi T, Papić Z, Hone J, Dean C R 2020 Nat. Nanotechnol. 15 569
Google Scholar
[147] Yan J, Fuhrer M S 2010 Nano Lett. 10 4521
Google Scholar
[148] Zhao Y, Cadden-Zimansky P, Ghahari F, Kim P 2012 Phys. Rev. Lett. 108 106804
Google Scholar
[149] Peters E C, Giesbers A J M, Burghard M, Kern K 2014 Appl. Phys. Lett. 104 203109
Google Scholar
[150] Zhu M J, Kretinin A V, Thompson M D, Bandurin D A, Hu S, Yu G L, Birkbeck J, Mishchenko A, Vera-Marun I J, Watanabe K, Taniguchi T, Polini M, Prance J R, Novoselov K S, Geim A K, Shalom M B 2017 Nat. Commun. 8 14552
Google Scholar
[151] Polshyn H, Zhou H, Spanton E M, Taniguchi T, Watanabe K, Young A F 2018 Phys. Rev. Lett. 121 226801
Google Scholar
[152] Zeng Y, Li J I A, Dietrich S A, Ghosh O M, Watanabe K, Taniguchi T, Hone J, Dean C R 2019 Phys. Rev. Lett. 122 137701
Google Scholar
[153] Li J I A, Shi Q, Zeng Y, Watanabe K, Taniguchi T, Hone J, Dean C R 2019 Nat. Phys. 15 898
Google Scholar
[154] Nakaharai S, Williams J R, Marcus C M 2011 Phys. Rev. Lett. 107 036602
Google Scholar
[155] Kim M, Choi J H, Lee S H, Watanabe K, Taniguchi T, Jhi S H, Lee H J 2016 Nat. Phys. 12 1022
Google Scholar
[156] Zimmermann K, Jordan A, Gay F, Watanabe K, Taniguchi T, Han Z, Bouchiat V, Sellie H, Sacépé B 2017 Nat. Commun. 8 14983
Google Scholar
[157] Ribeiro-Palau R, Chen S, Zeng Y, Watanabe K, Taniguchi T, Hone J, Dean C R 2019 Nano Lett. 19 2583
Google Scholar
[158] Chen S, Ribeiro-Palau R, Yang K, Watanabe K, Taniguchi T, Hone J, Goerbig M O, Dean C R 2019 Phys. Rev. Lett. 122 026802
Google Scholar
[159] Zhou H, Polshyn H, Taniguchi T, Watanabe K, Young A F 2020 Nat. Phys. 16 154
Google Scholar
[160] Eisenstein J P, Macdonald A H 2004 Nature 432 691
Google Scholar
[161] Narozhny B N and Levchenko A 2016 Rev. Mod. Phys. 88 025003
Google Scholar
[162] Solomon P M, Price P J, Frank D J, La Tulipe D C 1989 Phys. Rev. Lett 63 2508
Google Scholar
[163] Gramila T J, Eisenstein J P, MacDonald A H, Pfeiffer L N, West K W 1991 Phys. Rev. Lett. 66 1216
Google Scholar
[164] Sivan U, Solomon P M, Shtrikman H 1992 Phys. Rev. Lett. 68 1196
Google Scholar
[165] Gorbachev R V, Geim A K, Katsnelson M I, Novoselov K S, Tudorovskiy T, Grigorieva I V, MacDonald A H, Morozov S V, Watanabe K, Taniguchi T, Ponomarenko L A 2012 Nat. Phys. 8 896
Google Scholar
[166] Kim S, Jo I, Nah J, Yao Z, Banerjee S K, Tutuc E 2011 Phys. Rev. B 83 161401(R
Google Scholar
[167] Li J I A, Taniguchi T, Watanabe K, Hone J, Levchenko A, Dean C R 2016 Phys. Rev. Lett. 117 046802
Google Scholar
[168] Liu X M, Watanabe K, Taniguchi T, Halperin B I, Kim P 2017 Nat. Phys. 13 746
Google Scholar
[169] X Liu, L Wang, K C Fong, Y Gao, P Maher, K Watanabe, T Taniguchi, J Hone, C Dean, P Kim 2017 Phys. Rev. Lett. 119 056802
Google Scholar
[170] L Esaki, R Tsu 1970 IBM J. Res. Dev. 14 61
Google Scholar
[171] Weiss D, von Klitzing K, Ploog K 1989 Europhys. Lett. 8 179
Google Scholar
[172] Ismail K, Chu W, Yen A, Antoniadis D A, Smith H I 1989 Appl. Phys. Lett. 54 460
Google Scholar
[173] Schlösser T, Ensslin K, Kotthaus J P 1996 Semicond. Sci. Tech. 11 1582
Google Scholar
[174] Albrecht C, Smet J H, von Klitzing K, Weiss D, Umansky V, Schweizer H 2001 Phys. Rev. Lett. 86 147
Google Scholar
[175] Melinte S, Berciu M, Zhou C, Tutuc E, Papadakis S J, Harrison C, De Poortere E P, Wu M, Chaikin P M, Shayegan M, Bhatt R N, Register R A 2004 Phys. Rev. Lett. 92 683
[176] Park C H, Yang L, Son Y W, Cohen M L, Louie S G 2008 Nat. Phys. 4 213
Google Scholar
[177] Forsythe C, Zhou X, Watanabe K, Taniguchi T, Pasupathy A, Moon P, Koshino M, Kim P, Dean C R 2018 Nat. Nanotechnol. 13 566
Google Scholar
[178] Li Y, Dietrich S, Forsythe C, Taniguchi T, Watanabe K, Moon P, Dean C R 2021 Nat. Nanotechnol. 16 525
Google Scholar
[179] Nam Y, Ki D K, Soler-Delgado D, Morpurgo A F 2018 Science 362 324
Google Scholar
[180] Nomura K, MacDonald A H 2006 Phys. Rev. Lett. 96 256602
Google Scholar
[181] Zarenia M, Pereira Jr J M, Farias G A, Peeters F M 2011 Phys. Rev. B 84 125451
Google Scholar
[182] Veyrat L, Déprez C, Coissard A, Li X, Gay F, Watanabe K, Taniguchi T, Han Z, Piot B A, Sellier H, Sacépé B 2020 Science 367 781
Google Scholar
[183] Konschuh S, Gmitra M, Fabian J 2010 Phys. Rev. B 82 245412
Google Scholar
[184] Min H, Hill J E, Sinitsyn N A, Sahu B R, Kleinman L, MacDonald A H 2006 Phys. Rev. B 74 165310
Google Scholar
[185] Yao Y, Ye F, Qi X L, Zhang S C, Fang Z 2007 Phys. Rev. B 75 041401(R
[186] Castro Neto A H, Guinea F 2009 Phys. Rev. Lett. 103 026804
Google Scholar
[187] Balakrishnan J, Koon G K W, Jaiswal M, Castro Neto A H, Özyilmaz B 2013 Nat. Phys. 9 284
Google Scholar
[188] Wojtaszek M, Vera-Marun I J, Maassen T, van Wees B J 2013 Phys. Rev. B 87 081402(R
Google Scholar
[189] Avsar A, Tan J Y, Taychatanapat T, Balakrishnan J, Koon G K W, Yeo Y, Lahiri J, Carvalho A, Rodin A S, O’Farrell E C T, Eda G, Castro Neto A H, Özyilmaz B 2014 Nat. Commun. 5 4875
Google Scholar
[190] Wang Z, Ki D K, Chen H, Berger H, MacDonald A H, Morpurgo A F 2015 Nat. Commun. 6 8339
Google Scholar
[191] A Dankert, S P Dash 2017 Nat. Commun. 8 16093
Google Scholar
[192] Benítez L A, Sierra J F, Torres W S, Arrighi A, Bonell F, Costache M V, Valenzuela S O 2018 Nat. Phys. 14 303
Google Scholar
[193] Avsar A, Ochoa H, Guinea F, Zyilmaz B, Vera-Marun I J 2020 Rev. Mod. Phys. 92 021003
Google Scholar
[194] Island J O, Cui X, Lewandowski C, Khoo J Y, Spanton E M, Zhou H, Rhodes D, Hone J C, Taniguchi T, Watanabe K, Levitov L S, Zaletel M P, Young A F 2019 Nature 571 85
Google Scholar
[195] Yang W, Chen G, Shi Z, Liu C C, Zhang L, Xie G, Cheng M, Wang D, Yang R, Shi D, Watanabe K, Taniguchi T, Yao Y G, Zhang Y B, Zhang G Y 2013 Nat. Mater. 12 792
Google Scholar
[196] Carr S, Fang S, Kaxiras E 2020 Nat. Rev. Mater 5 748
Google Scholar
[197] Hofstadter D R 1976 Phys. Rev. B 14 2239
Google Scholar
[198] Dean C R, Wang L, Maher P, Forsythe C, Ghahari F, Gao Y, Katoch J, Ishigami M, Moon P, Koshino M, Taniguchi T, Watanabe K, Shepard K L, Hone J, Kim P 2013 Nature 497 598
Google Scholar
[199] Hunt B, Sanchez-Yamagishi J D, Young A F, Yankowitz M, LeRoy B J, Watanabe K, Taniguchi T, Moon P, Koshino M, Jarillo-Herrero P, Ashoori R C 2013 Science 340 1427
Google Scholar
[200] Yu G L, Gorbachev R V, Tu J S, et al. 2014 Nat. Phys. 10 525
Google Scholar
[201] Kumar R K, Chen X, Auton G H, et al. 2017 Science 357 181
Google Scholar
[202] Spanton E M, Zibrov A A, Zhou H, Taniguchi T, Watanabe K, Zaletel M P, Young A F 2018 Science 360 62
Google Scholar
[203] Bistritzer R, MacDonald A H 2011 Proc. Natl. Acad. Sci. USA 108 12233
Google Scholar
[204] Suárez Morell E, Correa J D, Vargas P, Pacheco M, Barticevic Z 2010 Phys. Rev. B 82 121407
Google Scholar
[205] Moon P, Koshino M 2014 Phys. Rev. B 90 155406
Google Scholar
[206] Kennes D M, Claassen M, Xian L, Georges A, Millis A J, Hone J, Dean C R, Basov D N, Pasupathy A N, Rubio A 2021 Nat. Phys. 17 155
Google Scholar
[207] Cao Y, Luo J Y, Fatemi V, Fang S, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Jarillo-Herrero P 2016 Phys. Rev. Lett. 117 116804
Google Scholar
[208] Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C, Jarillo-Herrero P 2018 Nature 556 80
Google Scholar
[209] Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, Jarillo-Herrero P 2018 Nature 556 43
Google Scholar
[210] Chen G, Jiang L, Wu S, Lyu B, Li H, Chittari B L, Watanabe K, Taniguchi T, Shi Zh, Jung J, Zhang Y B, Wang F 2019 Nat. Phys. 15 237
Google Scholar
[211] Chen G, Sharpe A L, Gallagher P, Rosen I T, Fox E J, Jiang L, Lyu B, Li H, Watanabe K, Taniguchi T, Jung J, Shi Z, Goldhaber-Gordon D, Zhang Y, Wang F 2019 Nature 572 215
Google Scholar
[212] Chen G, Sharpe A L, Fox E J, Zhang Y H, Wang S, Jiang L, Lyu B, Li H, Watanabe K, Takashi T, Shi Z, Senthil T, Goldhaber-Gordon D, Zhang Y B, Wang F 2020 Nature 579 56
Google Scholar
[213] Burg G W, Zhu J, Taniguchi T, Watanabe K, MacDonald A H, Tutuc E 2019 Phys. Rev. Lett. 123 197702
Google Scholar
[214] Shen C, Chu Y, Wu Q, Li N, Wang S, Zhao Y, Tang J, Liu J, Tian J, Watanabe K, Taniguchi T, Yang R, Meng Z Y, Shi D, Yazyev O V, Zhang G 2020 Nat. Phys. 16 520
Google Scholar
[215] Liu X, Hao Z, Khalaf E, Lee J Y, Ronen Y, Yoo H, Haei Najafabadi D, Watanabe K, Taniguchi T, Vishwanath A, Kim P 2020 Nature 583 221
Google Scholar
[216] Cao Y, Rodan-Legrain D, Rubies-Bigorda O, Park J M, Watanabe K, Taniguchi T, Jarillo-Herrero P 2020 Nature 583 215
Google Scholar
[217] Chen S, He M, Zhang Y H, Hsieh V, Fei Z, Watanabe K, Taniguchi T, Cobden D H, Xu X, Dean C R, Yankowitz M 2020 Nat. Phys. 17 374
[218] Xu S, Ezzi M M Al, Balakrishnan N, Garcia-Ruiz A, Tsim B, Mullan C, Barrier J, Xin N, Piot B A, Taniguchi T, Watanabe K, Carvalho A, Mishchenko A, Geim A K, Fal’ko V I, Adam S, Castro Neto A H, Novoselov K S, Shi Y 2021 Nat. Phys. 17 619
Google Scholar
[219] Park J M, Cao Y, Watanabe K, Taniguchi T, Jarillo-Herrero P 2021 Nature 590 249
Google Scholar
[220] Lu X, Stepanov P, Yang W, Xie M, Aamir M A, Das I, Urgell C, Watanabe K, Taniguchi T, Zhang G, Bachtold A, MacDonald A H, Efetov D K 2019 Nature 574 653
Google Scholar
[221] Sharpe A L, Fox E J, Barnard A W, Finney J, Watanabe K, Taniguchi T, M A Kastner, Goldhaber-Gordon D 2019 Science 365 605
Google Scholar
[222] Serlin M, Tschirhart C L, Polshyn H, Zhang Y, Zhu J, Watanabe K, Taniguchi T, Balents L, Young A F 2020 Science 367 900
Google Scholar
[223] He M, Li Y, Cai J, Liu Y, Watanabe K, Taniguchi T, Xu X, Yankowitz M 2021 Nat. Phys. 17 26
Google Scholar
[224] Polshyn H, Zhu J, Kumar M A, Zhang Y, Yang F, Tschirhart C L, Serlin M, Watanabe K, Taniguchi T, MacDonald A H, Young A F 2020 Nature 588 66
Google Scholar
[225] Saito Y, Ge J, Rademaker L, Watanabe K, Taniguchi T, Abanin D A, Young A F 2021 Nat. Phys. 17 478
Google Scholar
[226] Wu F, Lovorn T, Tutuc E, Macdonald A H 2018 Phys. Rev. Lett. 121 26402
Google Scholar
[227] Wu F, Lovorn T, Tutuc E, Martin I, Macdonald A H 2019 Phys. Rev. Lett. 122 86402
Google Scholar
[228] Ruiz-Tijerina D A, Fal’Ko V I 2019 Phys. Rev. B 99 125424
Google Scholar
[229] Dagotto E 1994 Rev. Mod. Phys. 66 763
Google Scholar
[230] Scalapino D J 2012 Rev. Mod. Phys. 84 1383
Google Scholar
[231] Mazurenko A, Chiu C S, Ji G, Parsons M F, Kanász-Nagy M, Schmidt R, Grusdt F, Demler E, Greif D, Greiner M 2017 Nature 545 462
Google Scholar
[232] Tran K, Moody G, Wu F, Lu X, Choi J, Kim K, Rai A, Sanchez D A, Quan J, Singh A, Embley J, Zepeda A, Campbell M, Autry T, Taniguchi T, Watanabe K, Lu N, Banerjee S K, Silverman K L, Kim S, Tutuc E, Yang L, MacDonald A H, Li X 2019 Nature 567 71
Google Scholar
[233] Seyler K L, Rivera P, Yu H, Wilson N P, Ray E L, Mandrus D G, Yan J, Yao W, Xu X 2019 Nature 567 66
Google Scholar
[234] Jin C, Regan E C, Yan A, Iqbal Bakti Utama M, Wang D, Zhao S, Qin Y, Yang S, Zheng Z, Shi S, Watanabe K, Taniguchi T, Tongay S, Zettl A, Wang F 2019 Nature 567 76
Google Scholar
[235] Alexeev E M, Ruiz-Tijerina D A, Danovich M, Hamer M J, Terry D J, Nayak P K, Ahn S, Pak S, Lee J, Sohn J I, Molas M R, Koperski M, Watanabe K, Taniguchi T, Novoselov K S, Gorbachev R V, Shin H S, Fal'ko V I, Tartakovskii A I 2019 Nature 567 81
Google Scholar
[236] Wang Z, Rhodes D A, Watanabe K, Taniguchi T, Hone J C, Shan J, Mak K F 2019 Nature 574 76
Google Scholar
[237] Tang Y, Li L, Li T, Xu Y, Liu S, Barmak K, Watanabe K, Taniguchi T, MacDonald A H, Shan J, Mak K F 2020 Nature 579 353
Google Scholar
[238] Regan E C, Wang D, Jin C, Iqbal Bakti Utama M, Gao B, Wei X, Zhao S, Zhao W, Zhang Z, Yumigeta K, Blei M, Carlström J D, Watanabe K, Taniguchi T, Tongay S, Crommie M, Zettl A, Wang F 2020 Nature 579 359
Google Scholar
[239] Shimazaki Y, Schwartz I, Watanabe K, Taniguchi T, Kroner M, Imamoğlu A 2020 Nature 580 472
Google Scholar
[240] Xu Y, Liu S, Rhodes D A, Watanabe K, Taniguchi T, Hone J, Elser V, Mak K F, Shan Jie 2020 Nature 587 214
Google Scholar
[241] Zhang Z, Wang Y, Watanabe K, Taniguchi T, Ueno K, Tutuc E, LeRoy B J 2020 Nat. Phys. 16 1093
Google Scholar
[242] Li H, Li S, Naik M H, Xie J, Li X, Wang J, Regan E, Wang D, Zhao W, Zhao S, Kahn S, Yumigeta K, Blei M, Taniguchi T, Watanabe K, Tongay S, Zettl A, Louie S G, Wang Feng, Crommie M F 2021 Nat. Phys. 20 945
Google Scholar
[243] Shabani S, Halbertal D, Wu W, Chen M, Liu S, Hone J, Yao W, Basov D N, Zhu X, Pasupathy A N 2021 Nat. Mater. 17 720
[244] Wang L, Shih E M, Ghiotto A, et al. 2020 Nat. Mater. 19 861
Google Scholar
[245] Koren E, Leven I, Lörtscher E, Knoll A, Hod O, Urs D 2016 Nat. Nanotechnol. 11 752
Google Scholar
[246] Ribeiro-Palau R, Zhang C J, Watanabe K, Taniguchi T, Hone J and Dean C R 2018 Science 361 690
Google Scholar
[247] Finney N R, Yankowitz M, Muraleetharan L, Watanabe K, Taniguchi T, Dean C R, Hone J 2019 Nat. Nanotechnol. 14 1029
Google Scholar
[248] Yankowitz M, Jung J, Laksono E, Leconte N, Chittari B L, Watanabe K, Taniguchi T, Adam S, Graf D, Dean C R 2018 Nature 557 404
Google Scholar
[249] Yankowitz M, Chen S, Polshyn H, Zhang Y, Watanabe K, Taniguchi T, Graf D, Young A F, Dean C R 2019 Science 363 1059
Google Scholar
[250] Stepanov P, Das I, Lu X, et al. 2020 Nature 583 375
Google Scholar
[251] Liu X, Wang Z, Watanabe K, Taniguchi T, Vafek O, Li J I A 2021 Science 371 1261
Google Scholar
[252] Arora H S, Polski R, Zhang Y, Thomson A, Choi Y, Kim H, Lin Z, Wilson I Z, Xu X, Chu J- H, Watanabe K, Taniguchi T, Alicea J, Nadj-Perge S 2020 Nature 583 379
Google Scholar
[253] Lin J X, Zhang Y H, Morissette E, Wang Z, Liu S, Rhodes D, Watanabe K, Taniguchi T, Hone J, Li J I A 2021 arXiv: 2102.06566 v1
Catalog
Metrics
- Abstract views: 18000
- PDF Downloads: 634
- Cited By: 0