Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Temperature dependence of MXenes plasmons induced hot carrier generation and transport

Jian Chao-Chao Ma Xiang-Chao Zhao Zi-Han Zhang Jian-Qi

Citation:

Temperature dependence of MXenes plasmons induced hot carrier generation and transport

Jian Chao-Chao, Ma Xiang-Chao, Zhao Zi-Han, Zhang Jian-Qi
PDF
HTML
Get Citation
  • Unlike conventional optoelectronic devices, plasmon-driven optoelectronic devices can efficiently realize energy conversion and regulate the energy distribution of hot carriers through high-energy, non-equilibrium “hot” electron-hole pairs (hot carriers) generated by surface plasmon non-radiative decay, thereby presenting new opportunities for realizing hot carrier optoelectronic devices. As the basis for the practical application of plasmon optoelectronic devices, searching for plasmon metal materials with exceptional performance has always been an important topic in the field of hot carrier optoelectronic devices. Currently, MXenes can be synthesized on a large scale and has excellent photoelectric properties, so it can be used to build a variety of hot carrier photodetectors with unique structures and functions. Unlike the fixed surface ends of two-dimensional materials such as graphene, MoS2 and borophene, MXenes has an abundance of surface functional groups. However, the increase of ambient temperature will accelerate the oxidation modification of surface functional groups, thus affecting the life and performance stability of optoelectronic devices. In view of the inherent limitations of experimental research on dynamic characteristics of hot carriers at continuous temperatures, we study the temperature effects on the electronic state distributions and scattering effects by using the theory of multi-body perturbation and quantum mechanics. Particularly, we introduce temperature effect into interband electron transition and phonon-assisted electron transition process to obtain temperature dependent dielectric function. From the perspective of non-radiative decay of surface plasmon, we quantify the hot carrier generation efficiency, energy distribution and transport characteristics by first principles calculations, in order to systematically study the ambient temperature dependence of plasmon-induced hot carriers in MXenes. The results show that the interband transition and the phonon-assisted electron transition in MXenes together efficiently produce high-energy hot hole-dominated carriers with a long lifetime and transport distance, which is comparable to borophene. The increase of ambient temperature significantly improves the hot carrier generation efficiency in the infrared range. Meanwhile, the physical mechanism of hot carrier generation in visible light is almost unaffected by the increase of ambient temperature, and the generated hot holes show excellent ambient temperature stability. In addition, the lifetime and transport distance of hot carriers decrease with ambient temperature increasing, which is mainly due to the enhanced scattering of electrons and optical phonons. The research results will provide theoretical and data support for quantitatively evaluating the ambient temperature stability of MXenes plasmon optoelectronic devices in practical environment.
      Corresponding author: Ma Xiang-Chao, xcma@xidian.edu.cn
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 12304047), the China Postdoctoral Science Foundation (Grant No. 2023M742752), and the Fundamental Research Funds for the Central Universities, China (Grant No. XJSJ23176).
    [1]

    Zhang J C, Wang Y W, Li D, Sun Y H, Jiang L 2022 ACS Mater. Lett. 4 343Google Scholar

    [2]

    Fang Y C, Wu Q M, Li H H, Zhang B, Yan R, Chen J L, Sun M T 2018 Appl. Phys. Lett. 112 163101Google Scholar

    [3]

    周利, 王取泉 2019 68 147301]Google Scholar

    Zhou L, Wang Q Q 2019 Acta Phys. Sin. 68 147301Google Scholar

    [4]

    Lian C, Hu S Q, Zhang J, Cheng C, Yuan Z, Gao S W, Meng S 2020 Phys. Rev. Lett. 125 116802Google Scholar

    [5]

    Hu H, Yu R W, Teng H C, Hu D B, Chen N, Qu Y P, Yang X X, Chen X Z, McLeod A S, Alonso-González P, Guo X D, Li C, Yao Z H, Li Z J, Chen J N, Sun Z P, Liu M K, Javier García de Abajo F, Dai Q 2022 Nat. Commun. 13 1465Google Scholar

    [6]

    Gan X R, Lei D Y 2022 Coord. Chem. Rev. 469 214665Google Scholar

    [7]

    Guo X D, Li N, Wu C C, Dai X K, Qi R S, Qiao T Y, Su T Y, Lei D D, Liu N S, Du J L, Wang E G, Yang X X, Gao P, Dai Q 2011 Adv. Mater. 34 2201120

    [8]

    Jeon J, Choi H, Choi S, Park J H, Lee B H, Hwang E, Lee S 2019 Adv. Funct. Mater. 29 1905384Google Scholar

    [9]

    柯宇轩, 岑颖乾, 綦殿禹, 张文静, 张青 2023 中国激光 50 0113008Google Scholar

    Ke Y X, Cen Y Q, Qi D Y, Zhang W J, Zhang Q 2023 Chin. J. Lasers 50 0113008Google Scholar

    [10]

    Narang P, Sundararaman R, Atwater H A 2016 Nanophotonics 5 96Google Scholar

    [11]

    Huang S C, Wang X, Qing-Qing Zhao Q Q, Zhu J F, Li C W, He Y H, Hu S, Sartin Matthew M, Yan S, Bin Ren B 2020 Nat. Commun. 11 4211Google Scholar

    [12]

    Zhu Y S, Xu H X, Yu P, Wang Z M 2021 Appl. Phys. Rev. 8 021305Google Scholar

    [13]

    Zhang Q, Li J B, Wen J, Li W, Chen X, Zhang Y F, Sun J Y, Yan X, Hu M G, Wu G R, Yuan K J, Guo H G, Yang X M 2022 Nat. Commun. 13 7900Google Scholar

    [14]

    Jermyn A S, Giulia T, Harry A A, William A G III, Prineha N, Ravishankar S 2019 Phys. Rev. Mater. 3 075201Google Scholar

    [15]

    Liu T T, Zhang C, Li X F 2022 Adv. Optical Mater. 10 2201153Google Scholar

    [16]

    Han Z R, Changkyun L, Song J W, Wang H Y, Peter B, Ruan X L 2023 Phy. Rev. B 107 L201202Google Scholar

    [17]

    Reddy H, Guler U, Kudyshev Z, Kildishev A V, Shalaev V M, Boltasseva A 2017 ACS Photonics 4 1413Google Scholar

    [18]

    Brown A M, Sundararaman R, Schwartzberg A M, Goddard W A, Atwater H A 2017 Phys. Rev. Lett. 118 087401Google Scholar

    [19]

    Brown A M, Sundararaman R, Narang P, Goddard W A, Atwater H A 2016 ACS Nano 10 957Google Scholar

    [20]

    Zhou J J, Hellman O, Bernardi M 2018 Phys. Rev. Lett. 121 226603Google Scholar

    [21]

    王善江, 苏丹, 张彤 2019 68 144401Google Scholar

    Wang S J, Su D, Zhang T 2019 Acta Phys. Sin. 68 144401Google Scholar

    [22]

    Sundararaman R, Letchworth-Weaver K, Schwarz K A, Gunceler D, Ozhabes Y, Arias T A 2017 SoftwareX 6 278Google Scholar

    [23]

    Sundararaman R, Arias T A 2013 Phys. Rev. B 87 165122Google Scholar

    [24]

    Souza I, Marzari N, Vanderbilt D 2001 Phys. Rev. B 65 035109Google Scholar

    [25]

    Giustino F, Cohen M L, Louie S G 2007 Phys. Rev. B 76 165108Google Scholar

    [26]

    Jian C C, Zhang J Q, He W M, Ma X C 2021 Nano Energy 82 105763Google Scholar

    [27]

    Ladstädter F, Hohenester U, Puschnig P, Ambrosch-Draxl C 2004 Phys. Rev. B 70 235125Google Scholar

    [28]

    张彩霞, 马向超, 张建奇 2022 71 227801Google Scholar

    Zhang C X, Ma X C, Zhang J Q 2022 Acta Phys. Sin. 71 227801Google Scholar

    [29]

    Garcia C A C, Coulter J, Narang P 2020 Phys. Rev. Res. 2 013073Google Scholar

    [30]

    Brown A M, Sundararaman R, Narang P, Goddard W A, Atwater H A 2016 Phys. Rev. B 94 075120.Google Scholar

    [31]

    Jian C C, Ma X C, Zhang J Q, Yong X 2021 J. Phys. Chem. C 125 15185Google Scholar

    [32]

    Bernardi M, Vigil-Fowler D, Ong C S, Neaton J B, Louie S G 2015 PNAS 112 5291Google Scholar

    [33]

    Xu J X, Peng T, Qin X, Zhang Q, Liu T Y, Dai W B, Chen B, Yu H Z, Shi S W 2021 J. Mater. Chem. A 9 14147Google Scholar

    [34]

    Anubhav J, Shyue P O, Geoffroy H, Chen W, William D R, Stephen D, Shreyas C, Dan G, David S, Gerbrand C, Kristin A. P 2013 APL Mater. 1 011002Google Scholar

    [35]

    Razium A S, Zhang P, Fan B M, Wei Y, Xu B 2023 Nano-micro Lett. 15 108Google Scholar

    [36]

    Zhang T Z, Chang L B, Zhang X F, Wan H J, Liu N, Zhou L J, Xiao X 2022 Nat. Commun. 13 6731Google Scholar

    [37]

    Bai Y L, Zhou K, Srikanth N, Pang J H L, He X D, Wang R G 2016 RSC Adv. 6 35731Google Scholar

    [38]

    Sundararaman R, Christensen T, Ping Y, Rivera N, Joannopoulos J D, Soljačić M, Narang P 2020 Phys. Rev. Mater. 4 074011Google Scholar

    [39]

    Harsha R, Wang K, Zhaxylyk K, Zhu L X, Yan S, Andrea V, Simon J H, Vikram G, Alexandra B, Pramod R, Vladimir M S, Edgar M 2020 Science 369 423Google Scholar

    [40]

    Yang Y N, Shi L J, Cao Z R, Wang R R, Jing Sun J 2019 Adv. Funct. Mater. 29 1807882Google Scholar

    [41]

    Jian C C, Ma X C, Zhang J Q, Jiang J L 2022 Nanophotonics 11 531Google Scholar

  • 图 1  Ti3C2O2 MXene 晶体结构和第一布里渊区内k点路径

    Figure 1.  The crystal structure of Ti3C2O2 MXene and the k-point path in the first Brillouin zone.

    图 2  Ti3C2O2 MXene的能带结构和声子谱

    Figure 2.  Band structure and phonon spectrum of Ti3C2O2 MXene.

    图 3  量化电子跃迁过程的介电函数虚部值 (a)带间电子跃迁; (b)声子协助电子跃迁

    Figure 3.  Imaginary part of the dielectric function to quantifies the electron transition process: (a) Direct interband electronic transitions; (b) phonon-assisted electron transitions.

    图 4  带间电子跃迁与声子协助电子跃迁的相对贡献, 颜色条表示归一化后的相对贡献, 其中红色代表声子协助电子跃迁, 蓝色代表带间电子跃迁

    Figure 4.  The relative contribution of interband and phonon-assisted electron transitions, the color bars represent normalized relative contributions, where red represents phonon-assisted electron transitions, and blue represents interband electron transitions

    图 5  热载流子的能量空间分布 (a) 300 K 和(b) 1100 K 时带间电子跃迁产生的热载流子能量分布; (c) 300 K 和(d) 1100 K 时声子协助电子跃迁产生的热载流子能量分布纵轴表示等离激元/光子的能量. 横轴表示热载流子的能量, 正值代表热电子, 负值代表热空穴; 费米能级设置为 0 eV; 色度条表示热载流子的分布概率

    Figure 5.  Energy distribution of hot carriers, generated by direct interband electronic transitions, as a function of plasmon/photon energies at 300 K (a) and 1100 K (b); generated by phonon-assisted electronic transitions, as a function of plasmon/photon energies at 300 K (c) and 1100 K (d). The longitudinal axis indicates the energy of plasmon/photon; the horizontal axis indicates the energy of plasmon/photon-generated carriers, where negative values indicate hot holes and positive values indicate hot electrons. The Fermi level is set to 0 eV. The color bar indicates distribution probabilities of carriers.

    图 6  热载流子的寿命, 横轴表示热载流子的能量, 正值代表热电子, 负值代表热空穴, 费米能级设置为 0 eV

    Figure 6.  The lifetime of hot carriers, the horizontal axis indicates the energy of hot carriers, where negative values indicate hot holes and positive values indicate hot electrons, the Fermi level is set to 0 eV.

    图 7  热载流子的平均自由程, 横轴表示热载流子的能量, 正值代表热电子, 负值代表热空穴, 费米能级设置为 0 eV

    Figure 7.  The mean free path (MFP) of hot carriers, the horizontal axis indicates the energy of hot carriers, where negative values indicate hot holes and positive values indicate hot electrons, the Fermi level is set to 0 eV.

    图 8  电子-电子散射与电子-声子散射产生的热载流子线宽, 横轴表示热载流子的能量, 正值代表热电子, 负值代表热空穴; 费米能级设置为 0 eV

    Figure 8.  The carrier line width generated by electron-electron scattering and electron-phonon scattering. The horizontal axis indicates the energy of hot carriers, where negative values indicate hot holes and positive values indicate hot electrons; the Fermi level is set to 0 eV.

    图 9  电子-声学声子散射与电子-光学声子散射产生的热载流子线宽, 横轴表示热载流子的能量, 正值代表热电子, 负值代表热空穴; 费米能级设置为 0 eV

    Figure 9.  The carrier line width generated by electron-acoustic phonon scattering and electron-optical phonon scattering, the horizontal axis indicates the energy of hot carriers, where negative values indicate hot holes and positive values indicate hot electrons; the Fermi level is set to 0 eV.

    表 1  不同晶体的晶格常数参数比较

    Table 1.  Lattice constant parameters of different crystals.

    晶体晶格常数/Å
    abc
    Ti3C2O2本文3.0393.03922.000
    文献[37]3.0393.039
    Ti3AlC2文献[37]3.0823.082
    DownLoad: CSV
    Baidu
  • [1]

    Zhang J C, Wang Y W, Li D, Sun Y H, Jiang L 2022 ACS Mater. Lett. 4 343Google Scholar

    [2]

    Fang Y C, Wu Q M, Li H H, Zhang B, Yan R, Chen J L, Sun M T 2018 Appl. Phys. Lett. 112 163101Google Scholar

    [3]

    周利, 王取泉 2019 68 147301]Google Scholar

    Zhou L, Wang Q Q 2019 Acta Phys. Sin. 68 147301Google Scholar

    [4]

    Lian C, Hu S Q, Zhang J, Cheng C, Yuan Z, Gao S W, Meng S 2020 Phys. Rev. Lett. 125 116802Google Scholar

    [5]

    Hu H, Yu R W, Teng H C, Hu D B, Chen N, Qu Y P, Yang X X, Chen X Z, McLeod A S, Alonso-González P, Guo X D, Li C, Yao Z H, Li Z J, Chen J N, Sun Z P, Liu M K, Javier García de Abajo F, Dai Q 2022 Nat. Commun. 13 1465Google Scholar

    [6]

    Gan X R, Lei D Y 2022 Coord. Chem. Rev. 469 214665Google Scholar

    [7]

    Guo X D, Li N, Wu C C, Dai X K, Qi R S, Qiao T Y, Su T Y, Lei D D, Liu N S, Du J L, Wang E G, Yang X X, Gao P, Dai Q 2011 Adv. Mater. 34 2201120

    [8]

    Jeon J, Choi H, Choi S, Park J H, Lee B H, Hwang E, Lee S 2019 Adv. Funct. Mater. 29 1905384Google Scholar

    [9]

    柯宇轩, 岑颖乾, 綦殿禹, 张文静, 张青 2023 中国激光 50 0113008Google Scholar

    Ke Y X, Cen Y Q, Qi D Y, Zhang W J, Zhang Q 2023 Chin. J. Lasers 50 0113008Google Scholar

    [10]

    Narang P, Sundararaman R, Atwater H A 2016 Nanophotonics 5 96Google Scholar

    [11]

    Huang S C, Wang X, Qing-Qing Zhao Q Q, Zhu J F, Li C W, He Y H, Hu S, Sartin Matthew M, Yan S, Bin Ren B 2020 Nat. Commun. 11 4211Google Scholar

    [12]

    Zhu Y S, Xu H X, Yu P, Wang Z M 2021 Appl. Phys. Rev. 8 021305Google Scholar

    [13]

    Zhang Q, Li J B, Wen J, Li W, Chen X, Zhang Y F, Sun J Y, Yan X, Hu M G, Wu G R, Yuan K J, Guo H G, Yang X M 2022 Nat. Commun. 13 7900Google Scholar

    [14]

    Jermyn A S, Giulia T, Harry A A, William A G III, Prineha N, Ravishankar S 2019 Phys. Rev. Mater. 3 075201Google Scholar

    [15]

    Liu T T, Zhang C, Li X F 2022 Adv. Optical Mater. 10 2201153Google Scholar

    [16]

    Han Z R, Changkyun L, Song J W, Wang H Y, Peter B, Ruan X L 2023 Phy. Rev. B 107 L201202Google Scholar

    [17]

    Reddy H, Guler U, Kudyshev Z, Kildishev A V, Shalaev V M, Boltasseva A 2017 ACS Photonics 4 1413Google Scholar

    [18]

    Brown A M, Sundararaman R, Schwartzberg A M, Goddard W A, Atwater H A 2017 Phys. Rev. Lett. 118 087401Google Scholar

    [19]

    Brown A M, Sundararaman R, Narang P, Goddard W A, Atwater H A 2016 ACS Nano 10 957Google Scholar

    [20]

    Zhou J J, Hellman O, Bernardi M 2018 Phys. Rev. Lett. 121 226603Google Scholar

    [21]

    王善江, 苏丹, 张彤 2019 68 144401Google Scholar

    Wang S J, Su D, Zhang T 2019 Acta Phys. Sin. 68 144401Google Scholar

    [22]

    Sundararaman R, Letchworth-Weaver K, Schwarz K A, Gunceler D, Ozhabes Y, Arias T A 2017 SoftwareX 6 278Google Scholar

    [23]

    Sundararaman R, Arias T A 2013 Phys. Rev. B 87 165122Google Scholar

    [24]

    Souza I, Marzari N, Vanderbilt D 2001 Phys. Rev. B 65 035109Google Scholar

    [25]

    Giustino F, Cohen M L, Louie S G 2007 Phys. Rev. B 76 165108Google Scholar

    [26]

    Jian C C, Zhang J Q, He W M, Ma X C 2021 Nano Energy 82 105763Google Scholar

    [27]

    Ladstädter F, Hohenester U, Puschnig P, Ambrosch-Draxl C 2004 Phys. Rev. B 70 235125Google Scholar

    [28]

    张彩霞, 马向超, 张建奇 2022 71 227801Google Scholar

    Zhang C X, Ma X C, Zhang J Q 2022 Acta Phys. Sin. 71 227801Google Scholar

    [29]

    Garcia C A C, Coulter J, Narang P 2020 Phys. Rev. Res. 2 013073Google Scholar

    [30]

    Brown A M, Sundararaman R, Narang P, Goddard W A, Atwater H A 2016 Phys. Rev. B 94 075120.Google Scholar

    [31]

    Jian C C, Ma X C, Zhang J Q, Yong X 2021 J. Phys. Chem. C 125 15185Google Scholar

    [32]

    Bernardi M, Vigil-Fowler D, Ong C S, Neaton J B, Louie S G 2015 PNAS 112 5291Google Scholar

    [33]

    Xu J X, Peng T, Qin X, Zhang Q, Liu T Y, Dai W B, Chen B, Yu H Z, Shi S W 2021 J. Mater. Chem. A 9 14147Google Scholar

    [34]

    Anubhav J, Shyue P O, Geoffroy H, Chen W, William D R, Stephen D, Shreyas C, Dan G, David S, Gerbrand C, Kristin A. P 2013 APL Mater. 1 011002Google Scholar

    [35]

    Razium A S, Zhang P, Fan B M, Wei Y, Xu B 2023 Nano-micro Lett. 15 108Google Scholar

    [36]

    Zhang T Z, Chang L B, Zhang X F, Wan H J, Liu N, Zhou L J, Xiao X 2022 Nat. Commun. 13 6731Google Scholar

    [37]

    Bai Y L, Zhou K, Srikanth N, Pang J H L, He X D, Wang R G 2016 RSC Adv. 6 35731Google Scholar

    [38]

    Sundararaman R, Christensen T, Ping Y, Rivera N, Joannopoulos J D, Soljačić M, Narang P 2020 Phys. Rev. Mater. 4 074011Google Scholar

    [39]

    Harsha R, Wang K, Zhaxylyk K, Zhu L X, Yan S, Andrea V, Simon J H, Vikram G, Alexandra B, Pramod R, Vladimir M S, Edgar M 2020 Science 369 423Google Scholar

    [40]

    Yang Y N, Shi L J, Cao Z R, Wang R R, Jing Sun J 2019 Adv. Funct. Mater. 29 1807882Google Scholar

    [41]

    Jian C C, Ma X C, Zhang J Q, Jiang J L 2022 Nanophotonics 11 531Google Scholar

  • [1] Zhang Cai-Xia, Ma Xiang-Chao, Zhang Jian-Qi. Theoretical study on surface plasmon and hot carrier transport properties of Au(111) films. Acta Physica Sinica, 2022, 71(22): 227801. doi: 10.7498/aps.71.20221166
    [2] Li Zhi-Qiang, Tan Xiao-Yu, Duan Xin-Lei, Zhang Jing-Yi, Yang Jia-Yue. Deep learning molecular dynamics simulation on microwave high-temperature dielectric function of silicon nitride. Acta Physica Sinica, 2022, 71(24): 247803. doi: 10.7498/aps.71.20221002
    [3] Long Ze, Xia Xiao-Chuan, Shi Jian-Jun, Liu Jun, Geng Xin-Lei, Zhang He-Zhi, Liang Hong-Wei. Temperature dependent characteristics of Ni/Au vertical Schottky diode based on mechanically exfoliated beta-Ga2O3 single crystal. Acta Physica Sinica, 2020, 69(13): 138501. doi: 10.7498/aps.69.20200424
    [4] Fang Long, Chen Guo-Ding. Temperature charateristics of droplet impacting on static hot pool. Acta Physica Sinica, 2019, 68(23): 234702. doi: 10.7498/aps.68.20190809
    [5] Luo Yi, Wang Xiao-Lin, Zhang Han-Wei, Su Rong-Tao, Ma Peng-Fei, Zhou Pu, Jiang Zong-Fu. Amplified spontaneous emission characteristics and locations of high temperature vulnerable point in fiber amplifiers. Acta Physica Sinica, 2017, 66(23): 234206. doi: 10.7498/aps.66.234206
    [6] Zhou Hang, Zheng Qi-Wen, Cui Jiang-Wei, Yu Xue-Feng, Guo Qi, Ren Di-Yuan, Yu De-Zhao, Su Dan-Dan. Enhanced channel hot carrier effect of 0.13 m silicon-on-insulator N metal-oxide-semiconductor field-effect transistor induced by total ionizing dose effect. Acta Physica Sinica, 2016, 65(9): 096104. doi: 10.7498/aps.65.096104
    [7] Luo Xue-Xue, Chen Jia-Bi, Hu Jin-Bing, Liang Bin-Ming, Jiang Qiang. Analysis and experimental investigation of the temperature property of sensors based on symmetrical metal-cladding optical waveguide. Acta Physica Sinica, 2015, 64(23): 234208. doi: 10.7498/aps.64.234208
    [8] Liu Peng, Liao Lei, Chu Ying-Bo, Wang Yi-Bo, Hu Xiong-Wei, Peng Jing-Gang, Li Jin-Yan, Dai Neng-Li. Irradiation and temperature influence on the Bi-doped silica fiber. Acta Physica Sinica, 2015, 64(22): 224220. doi: 10.7498/aps.64.224220
    [9] Lü Yi, Zhang He-Ming, Hu Hui-Yong, Yang Jin-Yong. A model of hot carrier gate current for uniaxially strained Si NMOSFET. Acta Physica Sinica, 2014, 63(19): 197103. doi: 10.7498/aps.63.197103
    [10] Zhang Yu-Jie, Zhang Wan-Rong, Jin Dong-Yue, Chen Liang, Fu Qiang, Guo Zhen-Jie, Xing Guang-Hui, Lu Zhi-Yi. Effects of Ge profile on thermal characteristics of SiGe heterojunction bipolar transistor with non-uniform doping profile in base region. Acta Physica Sinica, 2013, 62(3): 034401. doi: 10.7498/aps.62.034401
    [11] Zhu Hua-Bing, Wu Zheng-Bin, Liu Guo-Qiang, Xi Kui, Li Shan-Shan, Dong Yang-Yang. Study of quartz temperature characteristics for precise oscillator applications. Acta Physica Sinica, 2013, 62(1): 014205. doi: 10.7498/aps.62.014205
    [12] You Hai-Long, Lan Jian-Chun, Fan Ju-Ping, Jia Xin-Zhang, Zha Wei. Research on characteristics degradation of n-metal-oxide-semiconductor field-effect transistor induced by hot carrier effect due to high power microwave. Acta Physica Sinica, 2012, 61(10): 108501. doi: 10.7498/aps.61.108501
    [13] Lu Yao, Wang Pei-Ji, Zhang Chang-Wen, Feng Xian-Yang, Jiang Lei, Zhang Guo-Lian. First-principles calculation on electronic structure and optical properties of iron-doped SnO2. Acta Physica Sinica, 2011, 60(11): 113101. doi: 10.7498/aps.60.113101
    [14] Yu Feng, Wang Pei-Ji, Zhang Chang-Wen. First-principles study of optical and electronic properties of N-doped SnO2. Acta Physica Sinica, 2010, 59(10): 7285-7290. doi: 10.7498/aps.59.7285
    [15] Hasi Wu-Li-Ji, Li Xing, Guo Xiang-Yu, Lu Huan-Huan, Lü Zhi-Wei, Lin Dian-Yang, He Wei-Ming, Fan Rui-Qing. Investigation on stimulated Brillouin scattering medium——perfluoropolyether at high and low temperatures. Acta Physica Sinica, 2010, 59(12): 8554-8558. doi: 10.7498/aps.59.8554
    [16] Liu Lin-Jie, Yue Yuan-Zheng, Zhang Jin-Cheng, Ma Xiao-Hua, Dong Zuo-Dian, Hao Yue. Temperature characteristics of AlGaN/GaN MOS-HEMT with Al2O3 gate dielectric. Acta Physica Sinica, 2009, 58(1): 536-540. doi: 10.7498/aps.58.536
    [17] Liu Yu-An, Du Lei, Bao Jun-Lin. Research on correlation of 1/fγ noise and hot carrier degradation in metal oxide semiconductor field effect transistor. Acta Physica Sinica, 2008, 57(4): 2468-2475. doi: 10.7498/aps.57.2468
    [18] Zhang Yong, Tang Chao-Qun, Dai Jun. Ab inition studies on the electric and optical properties of Rb2TeW3O12. Acta Physica Sinica, 2005, 54(2): 868-874. doi: 10.7498/aps.54.868
    [19] Zhu Ming-Gang, Pan Wei, Li Wei. . Acta Physica Sinica, 2002, 51(7): 1608-1611. doi: 10.7498/aps.51.1608
    [20] PENG YING-CAI, XU GANG-YI, HE YU-LIANG, LIU MING, LI YUE-XIA. CARRIER TRANSPORT PROPERTIES OF THE (n)nc-Si:H/(p)c-Si HETEROJUNCTION. Acta Physica Sinica, 2000, 49(12): 2466-2471. doi: 10.7498/aps.49.2466
Metrics
  • Abstract views:  1650
  • PDF Downloads:  47
  • Cited By: 0
Publishing process
  • Received Date:  07 December 2023
  • Accepted Date:  27 March 2024
  • Available Online:  10 April 2024
  • Published Online:  05 June 2024

/

返回文章
返回
Baidu
map