-
In this paper, we report on the study of quartz material characteristic variation with temperature for precision oscillator applications with a novel piezoelectric material precise characterization method. Electrical impedance resonant characteristics of AT cut quartz sample are measured at temperatures ranging from ambient temperature up to 100 ℃. These measured results are fitted with a simulated annealing optimization algorithm to accurately calculate complex material parameters comprising loss characteristics. Effects of temperature change on quartz material characteristics and their loss are analyzed. This paper offers theoretical and technical supports to the design of precision oscillators with stable temperature characteristics.
-
Keywords:
- quartz /
- oscillator /
- temperature characteristics /
- piezoelectric material parameters
[1] Lam C S 2008 Proceedings of IEEE International Ultrasonics Symposium Beijing, China, August 2-5, 2008 p694
[2] Lim J, Kim H, Jackson T N, Choi K, Kenny D 2010 IEEE Trans Ultrason. Ferroelectr Freq. Control 57 1906
[3] Martin G, Wall B 2006 Proceedings of IEEE International Ultrasonics Symposium Vancouver, Canada, October 3-6, 2006 p825
[4] Petie D, Cesar E, Bar P, Joblot S, Parat G, Berchaud O, Barbier D, CarpentierI J F 2008 Proceedings of IEEE International Ultrasonics Symposium Beijing, China, August 2-5, 2008 p895
[5] IEEE Standard 176-1987
[6] Sherrit S, Wiederick H D, Mukherjee B K 1992 Ferroelectrics 134 111
[7] Smiths J G 1976 IEEE Trans. Sonics. Ultrasonics 23 393
[8] Kwok K W Chan H L W Choy C L 1997 IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 44 733
[9] Dong Y, Wu Z, Hu H, Wu B, Xu G 2010 IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 57 2613
[10] Vig J 1992 Introduction to Quartz Frequency Standards Fort Monmouth, USA, October 1992
[11] Beaver W D, Lau C K, Sun X M, Xu S K 2002 Proceedings of IEEE International Frequency Control Symposium and PDA Exhibition New Orleans, USA, May 29-31, 2002 p361
[12] Wu Z, Cochran S, Hurrell A 2008 Electron. Lett. 44 940
[13] Ward R W 1992 Proceedings of 14th Piezoelectric Devices Conference and Exhibition Salt Lake City, USA, September 15-17 1992
-
[1] Lam C S 2008 Proceedings of IEEE International Ultrasonics Symposium Beijing, China, August 2-5, 2008 p694
[2] Lim J, Kim H, Jackson T N, Choi K, Kenny D 2010 IEEE Trans Ultrason. Ferroelectr Freq. Control 57 1906
[3] Martin G, Wall B 2006 Proceedings of IEEE International Ultrasonics Symposium Vancouver, Canada, October 3-6, 2006 p825
[4] Petie D, Cesar E, Bar P, Joblot S, Parat G, Berchaud O, Barbier D, CarpentierI J F 2008 Proceedings of IEEE International Ultrasonics Symposium Beijing, China, August 2-5, 2008 p895
[5] IEEE Standard 176-1987
[6] Sherrit S, Wiederick H D, Mukherjee B K 1992 Ferroelectrics 134 111
[7] Smiths J G 1976 IEEE Trans. Sonics. Ultrasonics 23 393
[8] Kwok K W Chan H L W Choy C L 1997 IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 44 733
[9] Dong Y, Wu Z, Hu H, Wu B, Xu G 2010 IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 57 2613
[10] Vig J 1992 Introduction to Quartz Frequency Standards Fort Monmouth, USA, October 1992
[11] Beaver W D, Lau C K, Sun X M, Xu S K 2002 Proceedings of IEEE International Frequency Control Symposium and PDA Exhibition New Orleans, USA, May 29-31, 2002 p361
[12] Wu Z, Cochran S, Hurrell A 2008 Electron. Lett. 44 940
[13] Ward R W 1992 Proceedings of 14th Piezoelectric Devices Conference and Exhibition Salt Lake City, USA, September 15-17 1992
Catalog
Metrics
- Abstract views: 6712
- PDF Downloads: 755
- Cited By: 0