-
Characterizing the absorptivity of a rough metal surface is a difficult but important task. The uncertainty will be enlarged by using the indirect method, i.e. 1 – reflectance measurement. In contrast, the calorimetric method is of high fidelity. However, it is difficult to extract the absorptivity. The variation of temperature follows the heat conduction equation which is a differential equation. Therefore, a method based on physics-informed neural networks (PINNs) is proposed. In this method, the temperature rising curve is fitted to the differential equation by the neural network. The differential equation is incorporated into the network through the loss function. When the training is done, the absorptivity can be extracted. For demonstration, the numerical test and experimental test are performed. A set of temperature profiles with different absorptivity values is generated numerically. Then the absorptivity is extracted by PINN. The numerical results show that this method is able to determine the absorptivity and possesses the advantages of strong anti-interference capability and high accuracy. The maximum absolute error is 0.00092 in the range of 0.05 to 0.2. In the experiment, sand-blasted gold coated aluminum plates are used as the test objects, and they are heated by a continuous wave infrared laser. The temperature is measured by a K thermocouple. Then the absorptivity values of different samples are determined by the PINN, ranging from 2% to 10% because of the differences in roughness and electroplating process. The measurement repeatability is < 1%. The proposed method is very promising to become a powerful tool for measuring the absorptivity of rough metal surface.
[1] Indhu R, Vivek V, Sarathkumar L, Bharatish A, Soundarapandian S 2018 Lasers Manuf. Mater. Process. 5 458Google Scholar
[2] 张端明, 李莉, 李智华, 关丽, 侯思普, 谭新玉 2005 54 1283Google Scholar
Zhang R M, Li L, Li Z H, Guan L, Hou S P, Tan X Y 2005 Acta Phys. Sin. 54 1283Google Scholar
[3] Bergström D 2008 Ph. D. Dissertation (Sweden: Luleå University of Technology
[4] Gindele K, Kohl M, Mast M 1985 Appl. Opt. 24 1757Google Scholar
[5] 高爱华, 王少刚, 闫丽荣 2016 应用光学 37 303Google Scholar
Gao A H, Wang S G, Yan L R 2016 J. Appl. Opt. 37 303Google Scholar
[6] 苏宝嫆, 王哲恩, 罗乃草, 胡文富, 奚全新 1982 激光 9 533
Su B R, Wang Z E, Luo N C, Hu W F, Xi Q X 1982 Laser 9 533
[7] 陶文栓 2022 传热学 (第四版) (北京: 高等教育出版社) 第100—106页
Tao W S 2022 Heat Conduction (4th Ed.) (Beijing: Higher Education Press) pp100–106
[8] Haag M, Hügel H, Albright C E, Ramasamy S 1996 J. Appl. Phys. 79 3835Google Scholar
[9] 蔺秀川, 邵天敏 2001 50 856Google Scholar
Lin X C, Shao T M 2001 Acta Phys. Sin. 50 856Google Scholar
[10] LeCun Y, Bengio Y, Hinton G 2015 Nature 521 436Google Scholar
[11] Raissi M, Perdikaris P, Karniadakis G E 2019 J. Comput. Phys. 378 686Google Scholar
[12] Chang C W, Liu C H, Wang C C 2018 Smart Sci. 6 94Google Scholar
[13] Cai S Z, Mao Z P, Wang Z C, Yin M L, Karniadakis G E 2021 Acta Mech. Sin. 37 1727Google Scholar
[14] Cai S, Wang Z, Wang S, Perdikaris P, Karniadakis G E 2021 J. Heat Transfer 143 060801Google Scholar
[15] Mao Z P, Jagtap A D, Karniadakis G E 2020 Comput. Methods Appl. Mech. Eng. 360 112789Google Scholar
[16] Cuomo S, di Cola V S, Giampaolo F, Rozza G, Raissi M, Piccialli F 2022 J. Sci. Comput. 92 88Google Scholar
[17] Wang S, Yu X, Perdikaris P 2020 J. Comput. Phys. 449 110768Google Scholar
[18] McClenny L D, Braga-Neto U M 2023 J. Comput. Phys. 474 111722Google Scholar
[19] Xu K, Darve E 2021 arXiv: 2105.07552 [math. NA]
[20] Dudoit S, Fridlyand J 2003 Bioinformatics 19 1090Google Scholar
[21] Ge S Y, Na H Y 1989 Properties of Thermal Radiation and its Measurement (Beijing: Science Press) pp132–137 [葛绍岩, 那鸿悦 1989 热辐射性质及其测量 (北京: 科学出版社) 第132—137页]
Ge S Y, Na H Y 1989 Properties of Thermal Radiation and its Measurement (Beijing: Science Press) pp132–137
-
[1] Indhu R, Vivek V, Sarathkumar L, Bharatish A, Soundarapandian S 2018 Lasers Manuf. Mater. Process. 5 458Google Scholar
[2] 张端明, 李莉, 李智华, 关丽, 侯思普, 谭新玉 2005 54 1283Google Scholar
Zhang R M, Li L, Li Z H, Guan L, Hou S P, Tan X Y 2005 Acta Phys. Sin. 54 1283Google Scholar
[3] Bergström D 2008 Ph. D. Dissertation (Sweden: Luleå University of Technology
[4] Gindele K, Kohl M, Mast M 1985 Appl. Opt. 24 1757Google Scholar
[5] 高爱华, 王少刚, 闫丽荣 2016 应用光学 37 303Google Scholar
Gao A H, Wang S G, Yan L R 2016 J. Appl. Opt. 37 303Google Scholar
[6] 苏宝嫆, 王哲恩, 罗乃草, 胡文富, 奚全新 1982 激光 9 533
Su B R, Wang Z E, Luo N C, Hu W F, Xi Q X 1982 Laser 9 533
[7] 陶文栓 2022 传热学 (第四版) (北京: 高等教育出版社) 第100—106页
Tao W S 2022 Heat Conduction (4th Ed.) (Beijing: Higher Education Press) pp100–106
[8] Haag M, Hügel H, Albright C E, Ramasamy S 1996 J. Appl. Phys. 79 3835Google Scholar
[9] 蔺秀川, 邵天敏 2001 50 856Google Scholar
Lin X C, Shao T M 2001 Acta Phys. Sin. 50 856Google Scholar
[10] LeCun Y, Bengio Y, Hinton G 2015 Nature 521 436Google Scholar
[11] Raissi M, Perdikaris P, Karniadakis G E 2019 J. Comput. Phys. 378 686Google Scholar
[12] Chang C W, Liu C H, Wang C C 2018 Smart Sci. 6 94Google Scholar
[13] Cai S Z, Mao Z P, Wang Z C, Yin M L, Karniadakis G E 2021 Acta Mech. Sin. 37 1727Google Scholar
[14] Cai S, Wang Z, Wang S, Perdikaris P, Karniadakis G E 2021 J. Heat Transfer 143 060801Google Scholar
[15] Mao Z P, Jagtap A D, Karniadakis G E 2020 Comput. Methods Appl. Mech. Eng. 360 112789Google Scholar
[16] Cuomo S, di Cola V S, Giampaolo F, Rozza G, Raissi M, Piccialli F 2022 J. Sci. Comput. 92 88Google Scholar
[17] Wang S, Yu X, Perdikaris P 2020 J. Comput. Phys. 449 110768Google Scholar
[18] McClenny L D, Braga-Neto U M 2023 J. Comput. Phys. 474 111722Google Scholar
[19] Xu K, Darve E 2021 arXiv: 2105.07552 [math. NA]
[20] Dudoit S, Fridlyand J 2003 Bioinformatics 19 1090Google Scholar
[21] Ge S Y, Na H Y 1989 Properties of Thermal Radiation and its Measurement (Beijing: Science Press) pp132–137 [葛绍岩, 那鸿悦 1989 热辐射性质及其测量 (北京: 科学出版社) 第132—137页]
Ge S Y, Na H Y 1989 Properties of Thermal Radiation and its Measurement (Beijing: Science Press) pp132–137
Catalog
Metrics
- Abstract views: 1624
- PDF Downloads: 136
- Cited By: 0