搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于神经网络方法研究β-衰变释放粒子的平均能量数据

魏凯文 尚天帅 田榕赫 杨东 李春娟 陈军 李剑 黄小龙 朱佳丽

引用本文:
Citation:

基于神经网络方法研究β-衰变释放粒子的平均能量数据

魏凯文, 尚天帅, 田榕赫, 杨东, 李春娟, 陈军, 李剑, 黄小龙, 朱佳丽

Research on average energies data of β- decay nuclei Based on neural networks

WEI Kaiwen, SHANG Tianshuai, TIAN Ronghe, YANG Dong, LI Chunjuan, CHEN Jun, LI Jian, HUANG Xiaolong, ZHU Jiali
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 核素β-衰变释放的β粒子与γ射线平均能量是计算反应堆衰变热的核心参数,对核设施安全与工程应用至关重要.然而,许多核素的实验数据匮乏,现有理论模型精度难以满足需求.本文基于ENSDF数据库中543个实验数据准确的β-衰变核素(选自1136个β-衰变核素),采用神经网络方法对核素衰变发射的β粒子、γ射线及中微子的平均能量进行预测,对比了三种特征组(分别含特殊特征值T1/2、(1/T1/2)1/5,1/3Q)的模型性能.结果表明:相比特征组含T1/2以及(1/T1/2)1/5的模型,特征组含1/3Q的模型综合表现最佳,其β粒子与中微子预测误差分别为28.11%/56.9%和35.33%/37.76%,并且利用该特征组训练的机器学习模型成功补充了裂变产物区(质量数66-172)291个核素的缺失数据.核素图对比显示,神经网络对规律性较强的β粒子及中微子能量预测与实验吻合较好,但对γ射线(训练误差76.9%)以及奇奇核、幻数附近核素的预测偏差显著.本文证实经验特征值1/3Q可有效提升模型性能,同时揭示了数据规律性与模型泛化能力的关联,为后续融合物理机理优化机器学习模型提供了依据.
    The average β and γ energies data of the β——decay nuclei plays an important role in many fields of nuclear technology and scientific research, Such as the decay heat and antineutrino spectrum calculation of different kinds of reactors. However, for many nuclei, the reliable experimental measurements of their average energy are lacking, and the theoretical calculation needs to be improved to meet the accuracy requirements of the technical applications.
    In this study, the average β, γ and neutrino energies of the β—decay nuclei were investigated by the neural network approach based on the newly evaluated experimental data of 543 nuclei from a total of 1136 β—decay nuclei. For the neural network approach, three different feature groups are used for model training. Each feature group contains a characteristic feature value (one of the T1/2, (1/T1/2)1/5, and 1/3Q), along with five identical feature values (Z, N, parity of Z, parity of N, and ΔZ).
    The three characteristics feature values were selected based on the physical mechanism below:1. the average energy is obviously related with Q value and approximately taken as 1/3Q in the reactor industry. Hence the 1/3Q was selected as one characteristics feature value; 2. the half-live is relative with the Q value of β—decay, and T1/2 was considered; 3. considering the Sargent' s law, (1/T1/2)1/5 ∝ Q, a more accurate (1/T1/2)1/5 value were selected.
    As a result, for the feature group of T1/2, the training results for all three types of average energy were unsatisfactory. For the other groups, for the average β energy data, the relative errors are 19.32% and 28.11% for(1/T1/2)1/5 and 1/3Q feature groups in the training set and 82% and 56.9% in the validation set; for the average γ energy, the relative errors were 28.9% and 76.9% for (1/T1/2)1/5 and 1/3Q feature groups and >100% and >100% in the validation set; for the average neutrino energy, the relative errors in the training set were 27.82% and 35.33% for (1/T1/2)1/5 and 1/3Q feature group and 76.32% and 37.76% in the validation set.
    Considering the accuracy comparison of the three groups, 1/3Q feature group were selected to predict the average energy data of nuclei in the fission product region (mass numbers ranging from 66 to 172) for which miss reliable experimental data. As a result, we supplemented the average energy data with predicted values for 291 nuclei. Besides, a comparison were performed between the calculated data and the evaluated experimental data through the nuclide chart. It is found that the neural network provides good prediction of the experimental data for the average β and neutrino energies which exhibit relatively strong regularity. However, it shows significant deviations in predictions for average γ energy (relative error in the training set was 76.9%). Large deviation also emerges in the odd-odd nuclei and nuclei near magic numbers. This study confirms that incorporating empirical relationships and physical principles can effectively enhance the performance of the neural network, and simultaneously reveals the relationship between data regularity and model generalization capability. These findings provide a basis for future integration of physical mechanisms to optimize machine learning models.
  • [1]

    Nichols A 2015 J. Nucl. Sci. Technol. 5217

    [2]

    Rana M A 2008 Nucl. Sci. Tech. 19117

    [3]

    Song Q F, Zhu L, Guo H, Su J 2023 Nucl. Sci. Tech. 3432

    [4]

    Xiao K, Li P C, Wang Y J, Liu F H, Li Q F 2023 Nucl. Sci. Tech. 3462

    [5]

    Algora A, Tain J, Rubio B, Fallot M, Gelletly W 2021 Eur. Phys. J. A 5785

    [6]

    Greenwood R, Helmer R, Putnam M, Watts K 1997 Nucl. Instrum. Methods Phys. Res. A 39095

    [7]

    Valencia E, Tain J, Algora A, Agramunt J, Estevez E, Jordan M, Rubio B, Rice S, Regan P, Gelletly W, et al. 2017 Phys. Rev. C 95024320

    [8]

    Tengblad O, Aleklett K, Von Dincklage R, Lund E, Nyman G, Rudstam G 1989 Nucl. Phys. A 503136

    [9]

    Nichols A, Dimitriou P, Algora A, Fallot M, Giot L, Kondev F, Yoshida T, Karny M, Mukherjee G, Rasco B, et al. 2023 Eur. Phys. J. A 5978

    [10]

    Yoshida T, Nakasima R 1981 J. Nucl. Sci. Technol. 18393

    [11]

    Fang J, Zhang X, Shi M, Niu Z 2025 Eur. Phys. J. A 611

    [12]

    Fang J, Chen J, Niu Z 2022 Phys. Rev. C 106054318

    [13]

    Azevedo M, Ferreira R, Dimarco A, Barbero C A, Samana A R, Possidonio D 2020 Brazil. J. Phys. 5057

    [14]

    Nakata H, Tachibana T, Yamada M 1995 Nucl. Phys. A 59427

    [15]

    Nakata H, Tachibana T, Yamada M 1997 Nucl. Phys. A 625521

    [16]

    Tachibana T, Yamada M, Yoshida Y 1990 Prog. Theor. Phys. 84641

    [17]

    Nakata H, Tachibana T, Yamada M 1997 Nucl. Phys. A 625521

    [18]

    Borzov I 2006 Nucl. Phys. A 777645

    [19]

    Kumar V, Srivastava P C 2023 Eur. Phys. J. A 59237

    [20]

    Ni D, Ren Z 2012 J. Phys. G 39125105

    [21]

    Nabi J U, Ishfaq M 2020 New Astron. 78101356

    [22]

    Engel J, Bender M, Dobaczewski J, Nazarewicz W, Surman R 1999 Phys. Rev. C 60014302

    [23]

    Minato F, Bai C 2013 Phys. Rev. Lett. 110122501

    [24]

    Moller P, Nix J, Myers W, Swiatecki W 1995 At. Data Nucl. Data Tables 59185

    [25]

    Möller P, Randrup J 1990 Nucl. Phys. A 5141

    [26]

    Audi G, Bersillon O, Blachot J, Wapstra A 2003 Nucl. Phys. A 7293

    [27]

    Moller P, Nix J, Kratz K 1997 At. Data Nucl. Data Tables 66131Ä211

    [28]

    Möller P, Pfeiffer B, Kratz K L 2003 Phys. Rev. C 67055802

    [29]

    Soloviev V G 2020 Theory of Atomic Nuclei, Quasi-particle and Phonons. (Boca Raton, FL:CRC Press) p226

    [30]

    Kuz-Min V, Soloviev V 1988 Nucl. Phys. A 486118

    [31]

    Soloviev V, Sushkov A 1989 Phys. Lett. B 216259

    [32]

    Luo D, Clark B K 2019 Phys. Rev. Lett. 122226401

    [33]

    Yoshida S 2020 Phys. Rev. C 102024305

    [34]

    Chen Y, Wu X 2024 Int. J. Mod. Phys. E 332450012

    [35]

    Hizawa N, Hagino K, Yoshida K 2023 Phys. Rev. C 108034311

    [36]

    Wu X, Ren Z, Zhao P 2022 Phys. Rev. C 105 L031303

    [37]

    Yang Z X, Fan X H, Li Z P, Liang H 2023 Phys. Lett. B 840137870

    [38]

    Utama R, Chen W C, Piekarewicz J 2016 J. Phys. G 43114002

    [39]

    Wu D, Bai C, Sagawa H, Zhang H 2020 Phys. Rev. C 102054323

    [40]

    Xian Z Y, Ya Y, An R 2025 Phys. Lett. B 868139662

    [41]

    Jiao B B 2024 Int. J. Mod. Phys. E 332450019

    [42]

    Zhang X, He H, Qu G, Liu X, Zheng H, Lin W, Han J, Ren P, Wada R 2024 Phys. Rev. C 110014316

    [43]

    Zhang X, Liu X, Zheng H, Lin W, Wada R, Han J, Ma C, Qiao C, Peng D, Huang Y, et al. 2025 IEEE Trans. Nucl. Sci. 72795

    [44]

    Rodríguez U B, Vargas C Z, Gonçalves M, Duarte S B, Guzmán F 2019 J. Phys. G 46115109

    [45]

    Freitas P S, Clark J W 2019 arXiv preprint arXiv:1910.12345[nucl-th]

    [46]

    Ma N N, Bao X J, Zhang H F 2021 Chin. Phys. C 45024105

    [47]

    Yuan Z, Bai D, Ren Z, Wang Z 2022 Chin. Phys. C 46024101

    [48]

    Li W, Zhang X, Niu Y, Niu Z 2023 J. Phys. G 51015103

    [49]

    Luo J, Xu Y, Li X, Wang J, Zhang Y, Deng J, Zhang F, Ma N 2025 Phys. Rev. C 111034330

    [50]

    Akkoyun S 2020 Nucl. Instrum. Methods Phys. Res. B 46251

    [51]

    Ma C W, Peng D, Wei H L, Niu Z M, Wang Y T, Wada R 2020 Chin. Phys. C 44014104

    [52]

    Sun Q K, Zhang Y, Hao Z R, Wang H W, Fan G T, Xu H H, Liu L X, Jin S, Yang Y X, Chen K J, et al. 2025 Nucl. Sci. Tech. 3652

    [53]

    Li W, Liu L, Niu Z, Niu Y, Huang X 2024 Phys. Rev. C 109044616

    [54]

    Özdoğan H, Üncü Y A, Şekerci M, Kaplan A 2024 Appl. Radiat. Isot. 204111115

    [55]

    Lay D, Flynn E, Giuliani S A, Nazarewicz W, Neufcourt L 2024 Phys. Rev. C 109044305

    [56]

    Guo Y Y, Tang X Q, Liu H X, Wu X H 2025 Nucl. Tech. 48050003(in Chinese)[郭粤颖, 唐湘琪, 刘辉鑫, 吴鑫辉2025核技术48050003]

    [57]

    Utama R, Piekarewicz J 2017 Phys. Rev. C 96044308

    [58]

    Neufcourt L, Cao Y, Nazarewicz W, Viens F 2018 Phys. Rev. C 98034318

    [59]

    Utama R, Piekarewicz J 2018 Phys. Rev. C 97014306

    [60]

    Neufcourt L, Cao Y, Nazarewicz W, Olsen E, Viens F 2019 Phys. Rev. Lett. 122062502

    [61]

    Neufcourt L, Cao Y, Giuliani S, Nazarewicz W, Olsen E, Tarasov O B 2020 Phys. Rev. C 101014319

    [62]

    Lu Y, Shang T, Du P, Li J, Liang H, Niu Z 2025 Phys. Rev. C 111014325

    [63]

    Zeng L X, Yin Y Y, Dong X X, Geng L S 2024 Phys. Rev. C 109034318

    [64]

    Yiu T C, Liang H, Lee J 2024 Chin. Phys. C 48024102

    [65]

    Yüksel E, Soydaner D, Bahtiyar H 2024 Phys. Rev. C 109064322

    [66]

    Tan K Z, Gao W Q, Liu J 2025 Nucl. Tech. 48050010(in Chinese)[谭凯中, 高琬晴, 刘健2025核技术 48050010]

    [67]

    ENSDF:Evaluated Nuclear Structure Data File, National Nuclear Data Center https://www.nndc.bnl.gov/ensdf/[2025-07-07]

    [68]

    Wang M, Huang W J, Kondev F G, Audi G, Naimi S 2021 Chin. Phys. C 45030003

    [69]

    Sargent B 1933 Proc. R. Soc. A 139659

  • [1] 张童, 王加豪, 田帅, 孙旭冉, 李日. 基于机器学习的铸件凝固过程动态收缩行为.  , doi: 10.7498/aps.74.20241581
    [2] 王鹏, 麦麦提尼亚孜·麦麦提阿卜杜拉. 机器学习的量子动力学.  , doi: 10.7498/aps.74.20240999
    [3] 刘宇杰, 王振宇, 雷航, 张国宇, 咸家伟, 高志斌, 孙军, 宋海峰, 丁向东. 卷积神经网络辅助无机晶体弹性性质预测.  , doi: 10.7498/aps.74.20250127
    [4] 张孙成, 韩同伟, 王如盟, 杨艳陶, 张小燕. 基于机器学习的菱形穿孔石墨烯负泊松比效应预测与优化.  , doi: 10.7498/aps.74.20241624
    [5] 吴阳海, 杜海龙, 薛雷, 李佳鲜, 薛淼, 郑国尧. 基于机器学习的托卡马克偏滤器靶板热负荷预测研究.  , doi: 10.7498/aps.74.20250381
    [6] 张旭, 丁进敏, 侯晨阳, 赵一鸣, 刘鸿维, 梁生. 基于机器学习的激光匀光整形方法.  , doi: 10.7498/aps.73.20240747
    [7] 张嘉晖. 蛋白质计算中的机器学习.  , doi: 10.7498/aps.73.20231618
    [8] 欧阳鑫健, 张岩星, 王之龙, 张锋, 陈韦嘉, 庄园, 揭晓, 刘来君, 王大威. 面向铁电相变的机器学习: 基于图卷积神经网络的分子动力学模拟.  , doi: 10.7498/aps.73.20240156
    [9] 马锐垚, 王鑫, 李树, 勇珩, 上官丹骅. 基于神经网络的粒子输运问题高效计算方法.  , doi: 10.7498/aps.73.20231661
    [10] 管星悦, 黄恒焱, 彭华祺, 刘彦航, 李文飞, 王炜. 生物分子模拟中的机器学习方法.  , doi: 10.7498/aps.72.20231624
    [11] 郭唯琛, 艾保全, 贺亮. 机器学习回归不确定性揭示自驱动活性粒子的群集相变.  , doi: 10.7498/aps.72.20230896
    [12] 刘烨, 牛赫然, 李兵兵, 马欣华, 崔树旺. 机器学习在宇宙线粒子鉴别中的应用.  , doi: 10.7498/aps.72.20230334
    [13] 黎威, 龙连春, 刘静毅, 杨洋. 基于机器学习的无机磁性材料磁性基态分类与磁矩预测.  , doi: 10.7498/aps.71.20211625
    [14] 陈江芷, 杨晨温, 任捷. 基于波动与扩散物理系统的机器学习.  , doi: 10.7498/aps.70.20210879
    [15] 张瑶, 张云波, 陈立. 基于深度学习的光学表面杂质检测.  , doi: 10.7498/aps.70.20210403
    [16] 王伟, 揭泉林. 基于机器学习J1-J2反铁磁海森伯自旋链相变点的识别方法.  , doi: 10.7498/aps.70.20210711
    [17] 王鹏举, 范俊宇, 苏艳, 赵纪军. 基于机器学习构建的环三亚甲基三硝胺晶体势.  , doi: 10.7498/aps.69.20200690
    [18] 张弦, 王宏力. 具有选择与遗忘机制的极端学习机在时间序列预测中的应用.  , doi: 10.7498/aps.60.080504
    [19] 彭建华, 于洪洁. 神经系统中随机和混沌感知信号的联想记忆与分割.  , doi: 10.7498/aps.56.4353
    [20] 神经网络的自适应删剪学习算法及其应用.  , doi: 10.7498/aps.50.674
计量
  • 文章访问数:  24
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-07-18

/

返回文章
返回
Baidu
map