-
The jet tagging task in high-energy physics is to distinguish signals of interest from the background, which is of great importance for the discovery of new particles, or new processes, at the large hadron collider. The energy deposition generated in the calorimeter can be seen as a kind of picture. Based on this notion, tagging jets initiated by different processes becomes a classic image classification task in the computer vision field. We use jet images as the input built on high dimensional low-level information, energy-momentum four-vectors, to explore the potential of convolutional neural networks (CNNs). Four models of different depths are designed to make the best underlying useful features of jet images. Traditional multivariable method, boosted decision tree (BDT), is used as a baseline to determine the performance of networks. We introduce four observable quantities into BDTs: the mass, transverse momenta of fat jets, the distance between the leading and subleading jets, and N-subjettiness. Different tree numbers are adopted to build three kinds of BDTs, which is intended to have variable classifying abilities. After training and testing, the results show that the CNN 3 is the neatest and most efficient network under the design of stacking convolutional layers. Deepening the model could improve the performance to a certain extent but it is unable to work all the time. The performances of all BDTs are almost the same, which is possibly due to a small number of input observable types. The performance metrics show that the CNNs outperform the BDTs: the background rejection efficiency increases up to 150% at 50% signal efficiency. Besides, after inspecting the best and the worst samples, we conclude the characteristics of jets initiated by different processes: jets obtained by Z boson decays tend to concentrate in the center of jet images or have a clear differentiable substructure; the substructures of jets from general quantum chromodynamics processes have more random forms and not only just have two subjets. As the final step, the confusion matrix of the CNN 3 indicate that it comes to be kind of conservative. Exploring the way of keeping the balance between conservative and radical is our goal in the future work.
-
Keywords:
- decays of Z bosons /
- quarks /
- gluons /
- neural network
[1] Kogler R, Nachman B, Schmidt A, Asquith L, Winkels E, Campanelli M, Delitzsch C, Harris P, Hinzmann A, Kar D, McLean C, Pilot J, Takahashi Y, Tran N, Vernieri C, Vos M 2019 Rev. Mod. Phys. 91 045003Google Scholar
[2] Kasieczka G, Plehn T, Butter A, Cranmer K, Debnath D, Dillon B M, Fairbairn M, Faroughy D A, Fedorko W, Gay C, Gouskos L, Kamenik J F, Komiske P, Leiss S, Lister A, Macaluso S, Metodiev E, Moore L, Nachman B, Nordström K, Pearkes J, Qu H, Rath Y, Rieger M, Shih D, Thompson J, Varma S 2019 SciPost Phys. 7 014Google Scholar
[3] Larkoski A J, Moult I, Nachman B 2020 Phys. Rep. 841 1Google Scholar
[4] 来志, 郭亮, 李小珍, 党文佳 2013 62 184207Google Scholar
Lai Z, Guo L, Li X Z, Dang W J 2013 Acta Phys. Sin. 62 184207Google Scholar
[5] 杨自欣, 高章然, 孙晓帆, 蔡宏灵, 张凤鸣, 吴小山 2019 68 210502Google Scholar
Yang Z X, Gao Z R, Sun X F, Cai H L, Zhang F M, Wu X S 2019 Acta Phys. Sin. 68 210502Google Scholar
[6] 徐启伟, 王佩佩, 曾镇佳, 黄泽斌, 周新星, 刘俊敏, 李瑛, 陈书青, 范滇元 2020 69 014209Google Scholar
Xu Q W, Wang P P, Zeng Z J, Huang Z B, Zhou X X, Liu J M, Li Y, Chen S Q, Fan D Y 2020 Acta Phys. Sin. 69 014209Google Scholar
[7] Cogan J, Kagan M, Strauss E, Schwarztman A 2015 J. High Energy Phys. 2015 118Google Scholar
[8] Almeida L G, Backović M, Cliche M, Lee S J, Perelstein M 2015 J. High Energy Phys. 2015 86Google Scholar
[9] Chen Y C J, Chiang C W, Cottin G, Shih D 2020 Phys. Rev. D 101 053001Google Scholar
[10] Qu H, Gouskos L 2020 Phys. Rev. D 101 056019Google Scholar
[11] Diefenbacher S, Frost H, Kasieczka G, Plehn T, Thompson J 2020 SciPost Phys. 8 023Google Scholar
[12] Fraser K, Schwartz M D 2018 J. High Energy Phys. 2018 93Google Scholar
[13] Macaluso S, Shih D 2018 J. High Energy Phys. 2018 121Google Scholar
[14] Lin J, Freytsis M, Moult I, Nachman B 2018 J. High Energy Phys. 2018 101Google Scholar
[15] Komiske P T, Metodiev E M, Schwartz M D 2017 J. High Energy Phys. 2017 110Google Scholar
[16] Kasieczka G, Plehn T, Russell M, Schell T 2017 J. High Energy Phys. 2017 6Google Scholar
[17] Baldi P, Bauer K, Eng C, Sadowski P, Whiteson D 2016 Phys. Rev. D 93 094034Google Scholar
[18] Oliveira L, Kagan M, Mackey L, Nachman B, Schwartzman A 2016 J. High Energy Phys. 2016 69Google Scholar
[19] Guest D, Collado J, Baldi P, Hsu S C, Urban G, Whiteson D 2016 Phys. Rev. D 94 112002Google Scholar
[20] Butter A, Kasieczka G, Plehn T, Russell M 2018 SciPost Phys. 5 028Google Scholar
[21] Kasieczka G, Kiefer N, Plehn T, Thompson J 2019 SciPost Phys. 6 069Google Scholar
[22] Erdmann M, Geiser E, Rath Y, Rieger M 2019 J. Instrum. 14 P06006Google Scholar
[23] Abdughani M, Ren J, Wu L, Yang J M 2019 J. High Energy Phys. 2019 55Google Scholar
[24] Komiske P T, Metodiev E M, Thaler J 2019 J. High Energy Phys. 2019 121Google Scholar
[25] Sjöstrand T, Ask S, Christiansen J R, Corke R, Desai N, Ilten P, Mrenna S, Prestel S, Rasmussen C O, Skands P Z 2015 Comput. Phys. Commun. 191 159Google Scholar
[26] Cacciari M, Salam G P, Soyez G 2012 Eur. Phys. J. C 72 1896Google Scholar
[27] Cacciari M, Salam G P, Soyez G 2008 J. High Energy Phys. 2008 63Google Scholar
[28] Krohn D, Thaler J, Wang L T 2010 J. High Energy Phys. 2010 84Google Scholar
-
图 3 (a)胖喷注的质量分布; (b)胖喷注的横向动量分布; (c)胖喷注含有的首要与次要喷注的距离分布; (d) N-subjettiness
$ {\tau }_{21} $ 的分布Figure 3. (a) Mass distribution of fat jets; (b) transverse momentum distribution of fat jets; (c) distribution of distance between leading and subleading subjets; (d) distribution of N-subjettiness
$ {\tau }_{21} $ .表 1 用来衡量不同模型表现的性能参数
Table 1. Metrics to evaluate performance of different models.
模型 AUC ACC R50 CNN 1 0.8754 0.8150 39.1103 CNN 2 0.8688 0.8252 53.3583 CNN 3 0.8980 0.8324 80.6715 CNN 4 0.8993 0.8328 79.9350 BDT 1 0.8955 0.8337 32.5351 BDT 2 0.8963 0.8342 32.8072 BDT 3 0.8969 0.8346 33.0144 -
[1] Kogler R, Nachman B, Schmidt A, Asquith L, Winkels E, Campanelli M, Delitzsch C, Harris P, Hinzmann A, Kar D, McLean C, Pilot J, Takahashi Y, Tran N, Vernieri C, Vos M 2019 Rev. Mod. Phys. 91 045003Google Scholar
[2] Kasieczka G, Plehn T, Butter A, Cranmer K, Debnath D, Dillon B M, Fairbairn M, Faroughy D A, Fedorko W, Gay C, Gouskos L, Kamenik J F, Komiske P, Leiss S, Lister A, Macaluso S, Metodiev E, Moore L, Nachman B, Nordström K, Pearkes J, Qu H, Rath Y, Rieger M, Shih D, Thompson J, Varma S 2019 SciPost Phys. 7 014Google Scholar
[3] Larkoski A J, Moult I, Nachman B 2020 Phys. Rep. 841 1Google Scholar
[4] 来志, 郭亮, 李小珍, 党文佳 2013 62 184207Google Scholar
Lai Z, Guo L, Li X Z, Dang W J 2013 Acta Phys. Sin. 62 184207Google Scholar
[5] 杨自欣, 高章然, 孙晓帆, 蔡宏灵, 张凤鸣, 吴小山 2019 68 210502Google Scholar
Yang Z X, Gao Z R, Sun X F, Cai H L, Zhang F M, Wu X S 2019 Acta Phys. Sin. 68 210502Google Scholar
[6] 徐启伟, 王佩佩, 曾镇佳, 黄泽斌, 周新星, 刘俊敏, 李瑛, 陈书青, 范滇元 2020 69 014209Google Scholar
Xu Q W, Wang P P, Zeng Z J, Huang Z B, Zhou X X, Liu J M, Li Y, Chen S Q, Fan D Y 2020 Acta Phys. Sin. 69 014209Google Scholar
[7] Cogan J, Kagan M, Strauss E, Schwarztman A 2015 J. High Energy Phys. 2015 118Google Scholar
[8] Almeida L G, Backović M, Cliche M, Lee S J, Perelstein M 2015 J. High Energy Phys. 2015 86Google Scholar
[9] Chen Y C J, Chiang C W, Cottin G, Shih D 2020 Phys. Rev. D 101 053001Google Scholar
[10] Qu H, Gouskos L 2020 Phys. Rev. D 101 056019Google Scholar
[11] Diefenbacher S, Frost H, Kasieczka G, Plehn T, Thompson J 2020 SciPost Phys. 8 023Google Scholar
[12] Fraser K, Schwartz M D 2018 J. High Energy Phys. 2018 93Google Scholar
[13] Macaluso S, Shih D 2018 J. High Energy Phys. 2018 121Google Scholar
[14] Lin J, Freytsis M, Moult I, Nachman B 2018 J. High Energy Phys. 2018 101Google Scholar
[15] Komiske P T, Metodiev E M, Schwartz M D 2017 J. High Energy Phys. 2017 110Google Scholar
[16] Kasieczka G, Plehn T, Russell M, Schell T 2017 J. High Energy Phys. 2017 6Google Scholar
[17] Baldi P, Bauer K, Eng C, Sadowski P, Whiteson D 2016 Phys. Rev. D 93 094034Google Scholar
[18] Oliveira L, Kagan M, Mackey L, Nachman B, Schwartzman A 2016 J. High Energy Phys. 2016 69Google Scholar
[19] Guest D, Collado J, Baldi P, Hsu S C, Urban G, Whiteson D 2016 Phys. Rev. D 94 112002Google Scholar
[20] Butter A, Kasieczka G, Plehn T, Russell M 2018 SciPost Phys. 5 028Google Scholar
[21] Kasieczka G, Kiefer N, Plehn T, Thompson J 2019 SciPost Phys. 6 069Google Scholar
[22] Erdmann M, Geiser E, Rath Y, Rieger M 2019 J. Instrum. 14 P06006Google Scholar
[23] Abdughani M, Ren J, Wu L, Yang J M 2019 J. High Energy Phys. 2019 55Google Scholar
[24] Komiske P T, Metodiev E M, Thaler J 2019 J. High Energy Phys. 2019 121Google Scholar
[25] Sjöstrand T, Ask S, Christiansen J R, Corke R, Desai N, Ilten P, Mrenna S, Prestel S, Rasmussen C O, Skands P Z 2015 Comput. Phys. Commun. 191 159Google Scholar
[26] Cacciari M, Salam G P, Soyez G 2012 Eur. Phys. J. C 72 1896Google Scholar
[27] Cacciari M, Salam G P, Soyez G 2008 J. High Energy Phys. 2008 63Google Scholar
[28] Krohn D, Thaler J, Wang L T 2010 J. High Energy Phys. 2010 84Google Scholar
Catalog
Metrics
- Abstract views: 5135
- PDF Downloads: 68
- Cited By: 0